‘ 1is MICCAI paper is the Open Access version, providec

MICCAI

MVP-LLMsS: Optimizing Intervention Timing
and Subsequent Decision Support for Mechanical
Ventilation Parameter Control Using Large
Language Models

Teqi Hao'™, Xiaoyu Tan?", Bin Li', Xuemin Wang?®, Chao Qu?, Yinghui Xu?,
and Xihe Qiu'™

1 School of Electronic and Electrical Engineering, Shanghai University of Engineering
Science, Shanghai, 201620, China
qiuxihe19930gmail.com
2 INFLY TECH (Shanghai)Co.,Ltd, Shanghai, 200030, China
3 Department of Emergency and Critical Disease, Songjiang Hospital Affiliated to
Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
4 AI83 Institute, Fudan University, Shanghai 200082, China

Abstract. Since the COVID-19 outbreak, global health systems have
faced unprecedented challenges, with mechanical ventilation playing a
critical role in supporting patients in ICUs. However, precise adjustment
of ventilation parameters remains complex, requiring continuous moni-
toring and personalized interventions by clinicians. This paper introduces
a novel formulation of ventilator parameter adjustment as a composite
problem involving optimal stopping and subsequent decision optimiza-
tion, supported by a domain-specific dataset reflecting real-world scenar-
ios. We propose a framework utilizing Large Language Models (LLMs)
to enhance interactivity and interpretability, leveraging their extensive
clinical knowledge from large text corpora for informed decision-making.
The framework addresses two key tasks: developing scheduled prompts
for optimal stopping to replicate clinical observation processes and im-
plementing Best Action Imitation Learning for robust ventilator parame-
ter optimization. Experimental results show significant improvements in
LLMs’ ability to predict optimal stopping points and optimize decision-
making, advancing clinical ventilator control. To our knowledge, this is
the first application of LLMs to this dual-task paradigm.

Keywords: Mechanical Ventilation - Optimal Stopping - Decision Op-
timization - Large Language Models.

1 Introduction

Since the onset of the COVID-19 pandemic, global healthcare systems have faced
immense challenges, with pneumonia severely damaging patients’ respiratory
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between our new task and prior research. Specif- predicting optimal stop-
ically, (a) earlier studies on mechanical ventila-  ping points via scheduled
tion parameter adjustment relied on reinforce-  prompts to guide timely
ment learning and single observational data, observation cessation. We

while (b) our task simulates the process in a  also utilize CoT to enhance
real ICU setting using Large Language Models  reasoning for subsequent
(LLMs). It requires doctors to evaluate data over  actions, boosting decision-
time for more precise decisions. making quality.

systems and posing significant threats to life. In ICUs, mechanical ventilation
has become a vital intervention for supporting patients with compromised respi-
ration [I2I318]. However, adjusting ventilation parameters accurately is a highly
complex task requiring continuous monitoring and personalized interventions by
healthcare professionals. Incorrect settings not only risk failing to support the
patient’s breathing effectively but may also cause severe complications, poten-
tially resulting in life-threatening outcomes [I321].

Machine learning, particularly supervised and reinforcement learning, is in-
creasingly applied for efficient mechanical ventilation adjustment [T6/22/T4205].
However, these methods face limitations: supervised learning requires large datasets
and struggles with continuous data, while reinforcement learning is hampered
by complex reward definitions and sparse data [16]. Current studies often use
discrete data, whereas clinicians observe patients over time (Figure , creat-
ing a need to determine an optimal observation duration to avoid intervention
delays or adjustment errors [QII]. This challenge highlights the need to imi-
tate clinicians’ complex decision-making, a task well-suited for Large Language
Models (LLMs) [I5/26)23]. With exceptional memory and reasoning, LLMs pos-
sess rich knowledge from pre-training on vast text corpora. They can be fine-
tuned on limited domain-specific data for effective generalization [I7/4], and
their reasoning is markedly enhanced by Chain-of-Thought (CoT) techniques
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that construct adaptive reasoning trajectories [I0J24]. Therefore, imitating
clinicians’ decision-making logic with LLMs, grounded in prior ven-
tilation knowledge, offers a promising pathway to optimize ventilator
parameter adjustments effectively.

In this paper, we propose MVP-LLMSs for Mechanical Ventilation Parameter
control using LLMs, as illustrated in Figure 2] This framework, named MVP-
LLMs, reframes the complex problem of ventilator parameter adjustment as a
sequential decision-making task comprising two core stages: (i) optimal stopping
and (ii) subsequent decision. To support this framework, we constructed a spe-
cialized dataset containing multiple real-world clinical observation trajectories
to train LLMs to learn and execute ventilation optimization strategies.

Rather than treating the LLMs as a simple black-box predictor, we leverage
it as a structured decision agent that simulates the thought process of clinical ex-
perts. Specifically, in the optimal stopping stage, we design “scheduled prompts”
that encode positional information within the time series into natural language,
guiding the model to autonomously determine the best intervention timing dur-
ing continuous observation. In the subsequent decision stage, we combine best
action imitation learning[6] with CoT-like reasoning validated by clinical ex-
perts. This method not only determines the optimal parameter adjustment but
also generates a clear and clinically logical reasoning path from observation to
action, thereby significantly enhancing the interpretability of the entire decision-
making process. The main contributions of this study are summarized as follows:

— This study pioneers modeling mechanical ventilation parameter adjustment
as an optimal stopping and decision-making problem, mirroring ICU profes-
sionals’ real-world workflow.

— We built a specialized dataset for predicting ventilation parameters using real
clinician data, rigorously cleaned and standardized, with clinician verification
for quality assurance.

— We proposed an LLM-based framework for ventilation control and optimal
stopping, demonstrating that our scheduled prompt method and imitation
learning technique significantly enhance policy performance.

2 Methods

2.1 Data Collection and Preprocessing

Our dataset was constructed under close guidance from clinical experts, based on
mechanical ventilation data from 165 ICU patients. To ensure medical validity,
all feature selection and data extraction procedures were supervised and verified
by ICU professionals, aiming to accurately simulate real-world clinical decision-
making standards. The dataset includes both monitoring parameters and their
corresponding ventilator settings, organized in the form of multiple patient tra-
jectories. For the process of feature dimension selection, we rigorously followed
the clinical experience of our cooperative doctors in making mechanical ventila-
tion parameter decisions to ensure the practicality and representativeness of the
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selected features for performing ventilator control. Specifically, we have listed
the monitoring features of patients and set parameters for each patient as shown
in Table [

Table 1: Meta Information and Data Composition

Category Parameter

Demographic Age, Gender, Diagnosis

Respiratory  Timestamp, Inhaled Volume, Exhaled Volume, Respiratory Rate, Spon-
taneous Rate, Minute Ventilation, Peak Airway Pressure, Mean Airway
Pressure, Plateau Pressure, Leak Volume, Rapid Breathing Index

Setting SIMV Frequency, Ventilation Mode, Expiratory Sensitivity, Flow Sen-
sitivity, O2 Concentration, PEEP, Pressure Support

We segment each trajectory into multiple sub-trajectories based on times-
tamps, with each sub-trajectory covering several time steps of observation and
decision-making. This mirrors the approach of ventilation professionals, who
observe first to gather sufficient information before making adjustments for ac-
curacy. Guided by this, we use an optimal action learning strategy to sample
the most effective sub-trajectories for dataset creation. Ultimately, we have con-
structed an initial dataset D; comprising 3k trajectories. Among them, the initial
dataset D; is as follows:

,Dt:{(xi;yivRiaxg) |RZ >T,i€[}7 (]_)

where each trajectory consists of ¢ data points that are interconnected through
a temporal sequence, where z is defined as the current state of the patient, y
represents the observation decision and parameter decision taken by the doctor
at the moment, x’ denotes the new state following the transition and R is the
reward calculated from the subsequent observation x’.

2.2 Leveraging LLMs for Optimal Stopping and Sequential
Decision-Making

We address the optimal stopping problem using reinforcement learning princi-
ples, guided by reward feedback to align preferences. Based on this, we have
developed a scheduled prompt, as shown in Figure [3] hypothesizing that the
optimal stopping point sept corresponds to the maximum reward value. We fur-
ther assume that this reward value follows a Gaussian distribution, decreasing
as the distance from sy increases. The distribution of reward values can be

represented as:
(d—w)?

R(dz) = Rpax-€ 227,85 = |Sz' - Sopt‘ (2)

where d represents the distance of each data point to the optimal stopping point.
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system: You are an expert proficient in ICU mechanical ventilation therapy, responsible for observing and
making decisions based on the patient's monitoring parameters and set parameters in a real clinical
environment. In a real ICU scenario, a physician needs to observe a patient [....], then make decisions
accordingly. [....] to continue observing or make a decision at each time step.

[Here are the patient's personal information, initial monitoring parameters, and detailed explanations of
each parameter.]

Obs 1: , Monitoring Parameters: VTI=320, VTE=295, RATE=38, FSPN=22,
MVSPN=8.5, PPEAK=30, PMEAN=13, PPLAT=26, MVLEAK=4.5, RSBI=160.

Stop 1: <|OPT_BEFORE|> This observation
point is somewhat distant from the optimal stopping point, <| SOMEWHAT_DISTANT|>.

Thought 1: The patient's inspiratory and expiratory volumes have increased slightly, indicating adequate
ventilation. However, the respiratory rate and spontaneous respiratory [....].
Action 1: obs.

[Here are the data from some intermediate observation points, which have been omitted due to space
constraints.]

Obs 8: , Monitoring Parameters: VTI=310, VTE=315, RATE=37, FSPN=18,
MVSPN=8.0, PPEAK=31, PMEAN=14, PPLAT=30, MVLEAK=4.8, RSBI=155.
Stop 8: This observation point is the optimal point to cease observation, <|STOP|>.

Thought 8: There is a slight improvement in the respiratory rate and spontaneous respiratory frequency.
However, the plateau pressure is now at 30, which indicates significant issues with lung compliance. Peak
pressure is slightly [....]

Action 8: act, Parameter Adjustment Strategy: SET SIMVRR=10, SET VENTMODE=5119, SET_ETS=25,
SET_TRIGGERFLOW=2.0, SET_OXYGEN=50, SET_ PEEP=8, SET_ PSUPP=10.

Fig.3: We provide an example of trajectory data simulating an ICU doctor’s
adjustment of ventilation parameters, incorporating multiple observation and
decision stages. Using CoT, we enhance the process’s interpretability.

We translated reward values into natural language to help LLMs simulate
reinforcement learning processes. We identify the ’optimal stopping observa-
tion point’ sep¢ within a trajectory and use scheduled prompts promptsiop(t) to
express distances from this point, incorporating special tokens for abstract dis-
tance learning. For instance, This observation point is the optimal point
to cease observation, 0 units away. <|STOP|>’ denotes the optimal point,
while *This observation point is nearly at the optimal stopping point,
just 1 unit away. <|NEARLY_OPTIMAL|>’ indicates proximity. This scheduled
prompt process can be viewed as a natural language transformation of the reward
function described in Equation (2)):

promptsop(t) = f(R(d;)). (3)

To further enhance the performance of the stopping strategy, we integrate
the CoT [24/19] approach for decision analysis. This method links monitoring pa-
rameters with data point positions, helping LLMs better understand sequential
relationships. This improves reasoning and the ability to determine the optimal
stopping moment. CoT enhancement was applied during decision-making to re-
fine the pre-selected optimal actions. Specifically, we provided the model with
the current observation state s; and the corresponding optimal action a;, using
advanced LLMs (e.g., GPT-4 [1]) ps to generate a detailed reasoning process ¢;:

¢t ~ po(-[se, ar). (4)

To ensure medical accuracy, each CoT segment was reviewed by professional
medical collaborators. We then combined the refined prompt with the generated
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CoT and integrated them into the data trajectory, resulting in the comprehensive
dataset Dyrvp = (8¢, ar, 1, promptsiop(t), ¢;). This dataset accurately simulates
the real-world workflow of ICU doctors in adjusting ventilation parameters.

2.3 Training and Evaluation

Training Stage During the training phase, we reformat the comprehensive
dataset Dy p into a multi-turn dialogue mode to simulate the interaction pro-
cess between doctors and ventilators. In each dialogue round, LLMs perform
stop-point reasoning and action decisions based on the patient’s data and obser-
vations, with historical information recorded and used as prompts in subsequent
rounds to support reasoning.

While much of the existing literature focuses on single data point predic-
tions [1412], our framework goes beyond this by addressing the entire phase of
mechanical ventilation regulation. Instead of limiting the analysis to individ-
ual data points, our approach accumulates historical observation information h;
across all ¢ time steps, which serves as the foundation for making adjustment
decisions. This process is accomplished through supervised fine-tuning and can
be mathematically represented as:

k
Inein _EDMVP[IOg HpG(ei‘stvht76<’i)]v (5)

=1

where e = (a;, promptsiop(t), ;) contains all the reasoning processes of the opti-
mal stopping and final decision formatted under promptsiop(t), and k represents
the number of tokens in e. This learning process not only significantly enhances
the accuracy of LLMs’ decisions on optimal stopping points and final param-
eter settings but also provides richer interpretability for clinicians to support
real-world mechanical ventilation parameter settings.

The entire training process was conducted on two Nvidia Tesla A100-80G
GPUs [I8], with a batch size of 4, a learning rate set at 2e-5, a warmup ratio of
0.03, and a weight decay of 0.05.

Evaluation Stage During evaluation, rewards were assigned to each action
based on the dataset’s format (Equation (2)), following a Gaussian distribu-
tion peaking at the optimal stopping point. We computed actual rewards for
LLM-predicted stopping points, using the mean as the evaluation score. For
the parameter-setting task, decision accuracy was measured by the standardized
mean absolute error (MAE) between predictions and ground truth. These met-
rics collectively assess LLMs’ performance in the observation-decision workflow.

3 Experiment

3.1 Baselines

Our research aims to enhance the interpretability of mechanical ventilation
decision-making by simulating the clinical reasoning process. Accordingly, our
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Fig. 4: Presented are the results of mechanical ventilation parameter adjustments
under different baselines across three distinct model scales. We comprehensively
report the standardized mean MAE for all methods. The experimental data
convincingly demonstrate that our proposed MVP-LLMS exhibits optimal per-
formance across all three scales of LLMs.

primary baselines are designed to evaluate different strategies within the LLM-
based framework, rather than to make direct comparisons with traditional se-
quential models that lack inherent interpretability. Based on this objective, we
designed the following baselines tailored specifically for evaluating MVP-LLMs:
1) Direct Action: Uses only the current state, ignoring history, yielding less
effective results. 2) Standard Prompt: Includes patient details, diagnostic
metrics, and action decisions ("obs" or "stop"), representing conventional LLM
decision-making. 3) CoT Prompt: Implements CoT between observation-action
cycles, generating 10 sequences at temperature 0.7, with medical professionals
selecting the best.

Our results show pretrained LLMs effectively encode mechanical ventilation
knowledge, analyzing parameter fluctuations systematically. To evaluate the gen-
eralization capability of our proposed framework across different model architec-
tures, we tested MVP-LLMs using Qwen2-1.5b-chat [25], Llama3-8b-instruct
[7], and Qwenl.5-14b-chat, repeating experiments three times. Reported aver-
ages are statistically significant (¢-test, p < 0.05).

3.2 Multi-step observation is beneficial for LLMs in predicting
mechanical ventilation parameters

We assessed multi-step observation’s impact on optimizing mechanical ventila-
tion parameter adjustment, following Section [2:3] Figures[d]show that multi-step
observation improves prediction accuracy across baselines and MVP-LLMs of
varying sizes, underscoring the task’s dependence on long-sequence processing.
Gathering sufficient information before decision-making aligns with real-world
clinical practices, while relying on single data points is less accurate and incon-
sistent with clinician procedures.
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Table 2: The average score performance of three different-sized models in the
first-stage optimal stopping task.

Method Qwen2-1.5b-chat Llama3-8b-instruct Qwenl.5-14b-chat
Standard Prompt 42.00 + 3.84 61.87 + 4.31 76.37 + 3.39
CoT Prompt 50.26 + 5.32 65.87 + 4.77 82.76 + 6.32
MVP-LLMs 58.48 + 3.56 71.13 £ 2.18 87.97 + 4.17
MVP-LLMs (1-shot) 89.65 4+ 2.98 03.48 + 4.23 96.77 + 2.88

Empirical results show that integrating CoT reasoning significantly enhances
LLMSs’ reasoning capabilities, demonstrating that pre-trained LLMs hold exten-
sive clinical knowledge on mechanical ventilation. This knowledge can be distilled
into models of any size via CoT, with even a 1.5B LLM benefiting substantially.

We observed that the final parameter-setting performance of the proposed
LLMs improved significantly with the use of the scheduled prompt promptsiop.
These prompts aligned LLM responses with observation point positions, ensur-
ing high accuracy by generating responses in semantic order. For instance, if
the LLM identified the first point as far from the optimal stopping point (e.g.,
"This observation point is very far, 5 units away"), subsequent judgments de-
creased incrementally until reaching the optimal point. This positional reasoning
improved sequential optimal stopping decisions over long observation contexts.

3.3 LLMs can determine the optimal stopping observation point in
mechanical ventilation.

We assessed LLMs in the optimal stopping task across various setups, excluding
“Direct Action” due to its lack of an observational step. Table [2] indicates that
LLMs can preliminarily determine when to stop observations based on monitor-
ing parameters. CoT reasoning significantly boosted decision-making accuracy,
and scheduled prompts improved optimal stopping point predictions. In Section
we showed that LLMs learn positional associations between observation
points via scheduled prompts, influencing subsequent reasoning behaviors.

To validate LLMs’ ability to learn positional connections and optimize deci-
sions, we introduced MVP-LLMs (1-shot), providing the true location of the first
observation point while maintaining other training aspects as in MVP-LLMsS.
Results in Table[2]reveal significant improvements: all model sizes excelled in the
optimal stopping task. The 1.5B model scored 89.65, and the 14B model achieved
96.77, confirming that scheduled prompts enable LLMs to effectively grasp and
utilize sequential positional relationships, showcasing strong performance in the
optimal stopping task.
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4 Conclusion

This paper proposes using LLMs to optimize mechanical ventilation adjustments
in ICUs by mimicking clinicians’ decision-making logic. The task is framed as an
optimal stopping problem followed by decision-making, enabling MVP-LLMs
to achieve superior control through LLMs’ contextual understanding and rea-
soning. A specialized dataset with observation sequences and clinician reasoning
annotations was constructed. Empirical results show notable performance gains
across LLM sizes using scheduled prompts and CoT-style reasoning. This ap-
proach advances ventilator control and underscores AI’s potential to improve
patient outcomes. To enhance generalization and clinical utility, we seek exter-
nal collaborations to build a diverse, multi-center dataset.
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