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Abstract. Histopathology image analysis is critical yet challenged by
the demand of segmenting tissue regions and nuclei instances for tu-
mor microenvironment and cellular morphology analysis. Existing stud-
ies focused on tissue semantic segmentation or nuclei instance segmenta-
tion separately, but ignored the inherent relationship between these two
tasks, resulting in insufficient histopathology understanding. To address
this issue, we propose a Co-Seg framework for collaborative tissue and
nuclei segmentation. Specifically, we introduce a novel co-segmentation
paradigm, allowing tissue and nuclei segmentation tasks to mutually en-
hance each other. To this end, we first devise a region-aware prompt
encoder (RP-Encoder) to provide high-quality semantic and instance re-
gion prompts as prior constraints. Moreover, we design a mutual prompt
mask decoder (MP-Decoder) that leverages cross-guidance to strengthen
the contextual consistency of both tasks, collaboratively computing se-
mantic and instance segmentation masks. Extensive experiments on the
PUMA dataset demonstrate that the proposed Co-Seg surpasses state-
of-the-arts in the semantic, instance and panoptic segmentation of tu-
mor tissues and nuclei instances. The source code is available at https:
//github.com/xq141839/Co-Seg.

Keywords: Collaborative Learning · Tissue Segmentation · Nuclei Seg-
mentation · Mutual Prompt.

1 Introduction

Medical image segmentation plays a crucial role in clinical applications and has
received extensive attention in the research [7, 29, 10, 5]. Particularly, histopathol-
ogy image analysis is challenged by the delineation of tissue regions and further
separation of individual nuclei within the regions to assess tissue subtypes and
tumor grading [36]. These requirements have led to two significant segmenta-
tion tasks in the field, i.e., tissue semantic segmentation and nuclei instance
segmentation.

For medical semantic segmentation, existing methods [26, 35, 24, 34] rely on
hierarchal encoding and decoding to enhance multi-scale awareness for precise
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Fig. 1. Comparison of our Co-Seg and existing works in tissue and nuclei segmentation.
(a) Two independent networks for tissue and nuclei segmentation. (b) A shared image
encoder but separated task decoders for tissue and nuclei segmentation. (c) Our Co-Seg
leverages mutual prompts for collaborative tissue and nuclei segmentation.

mask generation. In particular, ViT-based [1] and Mamba-based [17] architec-
tures model long-range dependencies to gain global contexts of target regions.
For instance segmentation, a series of works [6, 30, 2, 10] adopted different dis-
tance proxy maps to improve the boundary understanding of instances. Recent
SAM-based methods [3, 21, 29, 5, 29, 4, 33, 16, 19] have revealed impressive med-
ical semantic and instance segmentation performance by manually providing
corresponding task prompts.

Despite the advancements, existing methods [1, 31, 18, 32, 8] usually focus on
the optimization of tissue semantic or nuclei instance segmentation tasks, which
can only be supervised by the isolated knowledge. In fact, both tasks are highly
correlated as they aim to achieve the adequate perception and understanding
of histopathology images. For example, accurately identifying nuclei provides
valuable cues for understanding the underlying tissue structures, while tissue
segmentation can aid in localizing nuclei. Therefore, this strong interdependence
motivates us to develop a collaborative approach that integrates tissue and nuclei
segmentation to advance state-of-the-art histopathology image analysis.

To overcome this bottleneck, we propose Co-Seg, a collaborative tissue and
nuclei segmentation framework that allows semantic and instance segmentation
tasks to mutually enhance each other. As illustrated in Fig. 1(c), the Co-Seg,
based on a co-segmentation paradigm, improves segmentation mask quality by
capturing contextual dependencies between the two tasks. Specifically, we first
devise the region-aware prompt encoder (RP-Encoder) to extract high-quality
semantic and instance prompts from the target region of both tasks, guiding
segmentation decoding. We further introduce a mutual prompt mask decoder
(MP-Decoder), which jointly computes semantic and instance maps by lever-
aging cross-guidance. This collaborative learning approach achieves contextual
consistency, reducing prediction errors in both tasks. Experimental results on
melanoma tissue and nuclei segmentation tasks demonstrate that our Co-Seg
achieves remarkable performance over state-of-the-art segmentation methods.
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Fig. 2. (a) The overview of the proposed Co-Seg framework for collaborative tissue
and nuclei segmentation, consisting of (b) RP-Encoder and (c) MP-Decoder. Co-Seg
fully exploits complementary information by leveraging mutual prompts.

2 Methodology

As elaborated in Fig. 2, we devise the Co-Seg framework with the co-segmentation
paradigm, achieving the mutual optimization between tissue and nuclei segmen-
tation in medical imaging. To accomplish this, we design the RP-Encoder to
provide prior constraints to guide both tasks, and the MP-Decoder to cooper-
atively generate semantic and instance maps through bidirectional information
interactions. This integrated approach enables the two tasks to enhance each
other, leveraging mutual prompts for improved segmentation accuracy.

2.1 Co-Segmentation Paradigm

Existing tissue [9, 13, 22] and nuclei [23, 20, 3] segmentation methods decouple
the parameter space of semantic and instance segmentation, disrupting their in-
terdependencies, degrading the performance. To address this issue, we propose
the co-segmentation paradigm that leverages closed-loop bidirectional interac-
tion to realize dual-task collaborative optimization. Specifically, our goal is to
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train a model fΘ : x → {y1, y2}, where Θ = {θ1, θ2} represents the parameters
for semantic segmentation θ1 and instance segmentation θ2, with y1 and y2 as
the corresponding segmentation masks. To model the interdependence between
the two tasks, we define their joint prediction of y1 and y2 as:

p(y1, y2|x, θ1, θ2) = p(y1|x, θ1) · p(y2|y1, x, θ2) = p(y2|x, θ2) · p(y1|y2, x, θ1). (1)

Note that Eq. (1) reveals the mutual dependency between semantic and in-
stance segmentation through intertwined conditional probabilities. It states that
p(y1, y2|x, θ1, θ2), the joint probability of obtaining both segmentations given the
image and model parameters, can be decomposed in two symmetrical ways:

– p(y1|x, θ1) ·p(y2|y1, x, θ2) suggests that once the semantic segmentation y1 is
known, it directly influences the prediction of the instance segmentation y2.

– Similarly, p(y2|x, θ2) · p(y1|y2, x, θ1) implies that knowing the instance seg-
mentation y2 affects the outcome of the semantic segmentation y1.

Both expressions are mathematically equivalent because they describe the same
joint probability from different perspectives, highlighting that each segmenta-
tion task provides crucial context that enhances the accuracy of the other. This
reciprocal relationship underscores the need for a collaborative approach, where
both segmentation tasks are optimized together rather than in isolation, lever-
aging the full context available from each task to improve overall segmentation
results. Translating this relationship to the gradient calculations for θ1 and θ2,
we have:

∇θiℓi = −∇θiE [log p(yi|x, θi)]−∇θiE [log p(yj |yi, x, θj)] +∇θiI(y1; y2|x), (2)

for i, j ∈ {1, 2}, i ̸= j where ∇θI(y1; y2|x) ≈ E
[
∇θ log

p(y1,y2|x)
p(y1|x)p(y2|x)

]
. This term

captures the mutual information between y1 and y2, ensuring that both segmen-
tation tasks benefit from shared feature learning. The first term of Eq. (2) rep-
resents the main segmentation loss gradient, while the second term incorporates
the implicit gradient of task interdependencies, modeling the complementarity
between θ1 and θ2. This leads to the following optimization update rule:

θ1 ← θ1 − η∇θ1ℓ1, θ2 ← θ2 − η∇θ2ℓ2, (3)

where η is the learning rate. In this way, the co-segmentation paradigm breaks
the barrier of isolating gradient flows from each other in multi-task learning,
enabling our Co-Seg framework to achieve the bidirectional optimization of tissue
and nuclei segmentation.

2.2 Region-aware Prompt Encoder

The proposed co-segmentation paradigm requires establishing implicit interde-
pendencies between tissue and nuclei segmentation tasks. To achieve this, we
introduce the RP-Encoder that leverages mask prompts to capture task-specific
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target regions as prior constraints, as presented in Fig. 2(b). Specifically, we first
employ several convolutional blocks to extract features mi from mask logits µi.
After that, the RP-Encoder performs self-attention, followed by cross-attention
with shared image embeddings z to generate a set of dense prompts gi, as follows:

mi = Conv2(GELU(LN(Conv1(µi)))), (4)

gi = CrossAttention(SelfAttention(mi), z, z), (5)

where Conv1 denotes a 16× 16 convolutions for downsampling, Conv2 is a 1× 1
convolution for channel expansion, LN(·) is LayerNorm. These operations encode
the structural context of mask logits. On this basis, we apply RP-Encoder to
semantic and instance mask logits, effectively obtaining region-aware prompts:
g1 and g2 as prior constraints of Co-Seg for tissue and nuclei segmentation tasks.

2.3 Mutual Prompt Mask Decoder

Following the co-segmentation paradigm, we propose the MP-Decoder to enforce
bidirectional interactions between tissue and nuclei segmentation, ensuring mu-
tual refinement rather than treating them as isolated tasks, as illustrated in Fig.
2(c). Specifically, the MP-Decoder contains tissue and nuclei heads that leverage
two sets of query embeddings: q1 and q2 to save the decoding information of
both tasks. To leverage complementary effects between tasks, we first perform
self-attention on each query, followed by cross-attention with the other task’s
prompts, as follows:

q′i = CrossAttention(SelfAttention(qi), z ⊕ gj , z ⊕ gj), (6)

where ⊕ represents the element-wise addition. This is followed by applying MLP
to ensure the refined query embeddings are expressive. The MP-Decoder further
applies the reverse cross-attention to generate task-specific image embeddings
h1 and h2, as follows:

hi = CrossAttention(z ⊕ gj , q
′
i, q

′
i). (7)

On this basis, nuclei context prompts can enhance tissue segmentation consis-
tency, while tissue boundary feedback provides prior constraints for nuclei dis-
crimination. Following the standard SAM [15], each segmentation head adopts a
pixel decoder to upsample the refined task-specific image embedding. Finally, our
MP-Decoder generates tissue and nuclei segmentation predictions by perform-
ing the dot product between their upscaled image embeddings and corresponding
task queries. Overall, the proposed MP-Decoder utilizes the bidirectional inter-
actions of tissue and nuclei segmentation information to mutually improve the
quality of segmentation masks of our Co-Seg framework.
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Table 1. Comparison with state-of-the-
arts on tissue semantic segmentation.

Methods Dice mIoU HD
nnUnet [14] 90.90 84.48 236.03
Swin-Umamba [17] 89.67 82.75 265.43
EMCAD [24] 90.96 84.61 306.36
SAC [21] 91.19 85.01 295.57
H-SAM [5] 91.47 85.47 246.16
Co-Seg 92.51 87.18 206.72

Table 2. Comparison with state-of-the-
arts on nuclei instance segmentation

Methods F1 Prec. Rec. AJI
HoverNet [6] 75.53 70.53 82.80 64.40
CellPose [30] 75.30 71.12 81.79 65.15
CPPNet [2] 74.96 69.58 83.06 64.63
CellViT [10] 76.04 70.21 83.51 66.13
PromptNucSeg [29] 76.47 71.81 83.02 66.71
Co-Seg 79.70 77.05 83.61 69.14

2.4 Optimization Pipeline

To construct our Co-Seg framework, we first adopt Hirea ViT [27] as the shared
image encoder for tissue and nuclei segmentation, ensuring the consistency of
feature learning. In particular, we load the pre-trained SAM2-L [25] to initialize
corresponding parameters and freeze these weights to preserve pre-trained knowl-
edge. Additionally, we insert LoRA [12] and Adapter [11] into attention and FFN
layers to achieve parameter-efficient fine-tuning from natural to histopathology
domains. Based on the co-segmentation paradigm, Co-Seg includes two decoding
forwards, where the tissue and nuclei heads of the MP-Decoder share parameters
in these two stages. Specifically, the MP-Decoder leverages the image embedding
generated from the image encoder to calculate binary segmentation masks y′1
and y′2 of both tasks without any prompts. Then, we deliver them to the RP-
Encoder to provide tissue and nuclei prompts. In the second forward, they will
be directly transferred back to the MP-Decoder as prior constraints. Finally, the
MP-Decoder utilizes cross-guidance to co-generate tissue and nuclei segmenta-
tion masks. The training of Co-Seg consists of two parts: (1) the optimization of
tissue g1 and nuclei g2 prior constraints and (2) the joint optimization of tissue
and nuclei segmentation. The overall loss is formularized as:

LCoSeg = λ1Lg1
sem(ŷ

′
1, y

′
1) + λ2Lg2

ins(ŷ
′
2, y

′
2)︸ ︷︷ ︸

Prior Constraint Loss

+Lsem(ŷ1, y1) + Lins(ŷ2, y2)︸ ︷︷ ︸
Segmentation Loss

, (8)

where λ1 and λ2 are factors to adjust the contribution of each term. By optimiz-
ing LCoSeg, our Co-Seg achieves accurate tissue and nuclei segmentation with
superior performance across different histopathology images.

3 Experiments

3.1 Experimental Setup

To validate the effectiveness of the proposed Co-Seg, we adopt the melanoma-
specific histopathology dataset: PUMA [28] for tissue semantic and nuclei in-
stance segmentation tasks. It contains 206 histopathology images of 1024×1024
resolution and adopts a common split of training, validation, and test sets as
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Table 3. Comparison with state-of-the-arts on histopathology panoptic segmentation.

Methods PQtissue DQtissue SQtissue PQnuclei DQnuclei SQnuclei

nnUnet [14] 57.34 68.27 70.13 58.60 72.83 80.24
HoverNet [6] 58.95 67.25 69.92 60.91 74.96 81.04
CellViT [10] 60.55 71.32 69.17 62.91 76.59 81.95
H-SAM [5] 61.62 71.17 70.81 62.68 76.39 81.86
PromptNucSeg [29] 61.58 70.84 70.92 63.37 77.41 81.79
Co-Seg 63.09 72.82 70.99 66.11 79.70 82.80

Table 4. Ablation study of Co-Seg on PUMA tissue and nuclei Segmentation.

P D C
Tissue Semantic Seg. Nuclei Instance Seg.

Dice mIoU HD F1 Prec. Rec. AJI
90.98 84.71 287.19 76.35 73.18 82.27 66.59

✓ 91.23 85.18 261.37 77.01 73.25 83.01 67.08
✓ ✓ 91.76 86.13 246.56 78.19 74.91 82.54 67.93
✓ ✓ ✓ 92.51 87.18 206.72 79.70 77.05 83.61 69.14

7:1:2. We perform all experiments on a NVIDIA A5000 GPU using PyTorch.
For fair comparisons, we implement all tissue and nuclei segmentation methods
with the same training settings and configurations. We utilize the pre-trained
SAM ViT-H [15] structure as the image encoder of medical SAM baselines. We
apply the optimizer using Adam with an initial learning rate of 1×10−4 and use
the exponential decay strategy to adjust the learning rate with a factor of 0.98.
The batch size and epochs are set to 16 and 300. We leverage the combination of
cross-entropy loss and Dice loss to supervise the tissue segmentation. For nuclei
segmentation, we follow the standard combination loss of Focal loss, Dice loss,
MSE loss and MSGE loss [6, 10]. The loss coefficient λ1 and λ2 are set to 2 and
1. Our Co-Seg introduces additional 9.1% learnable parameters to the baseline
(in Table 4) during fine-tuning.

3.2 Comparison with State-of-the-art Methods

Tissue Semantic Segmentation. We first evaluate the performance of all
models in the tissue semantic segmentation. As illustrated in Table 1, we observe
that classical semantic segmentation methods are inferior to medical SAMs, e.g.,
H-SAM [5] surpasses EMCAD [24] with a 0.51% Dice increase. Remarkably, our
Co-Seg achieves the best performance with a P-value < 0.005, Dice of 92.51%,
and the lowest HD of 206.72, indicating precise tissue boundary localization.
Nuclei Instance Segmentation. The comparison of nuclei instance segmen-
tation is shown in Table 2. Our Co-Seg framework reveals the overwhelming
performance of four metrics. In particular, Co-Seg achieves a significant advan-
tage over the second-best PromptNucSeg [29], e.g., a P-value < 0.001, a F1-score
increase of 3.23%, and an AJI increase of 2.43%.
Histopathology Panoptic Segmentation. We further comprehensively eval-
uate the performance of our Co-Seg with the panoptic segmentation protocol.
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Fig. 3. Qualitative comparison of three evaluation protocols on tissue semantic and
nuclei instance segmentation. Benefiting from the mutual reinforcement of semantic
and instance segmentation tasks, our Co-Seg can delineate precise tissue regions and
segment accurate nuclei, containing fewer false positives.

As presented in Table 3, our Co-Seg benefits from the novel co-segmentation
paradigm, achieving the best performance of all six metrics, with a remarkable
PQ increase of 1.51% and 2.74% in tissue and nuclei segmentation tasks.

3.3 Ablation Study

To investigate the effectiveness of our proposed co-segmentation paradigm C,
RP-Encoder P and MP-Decoder D, we further conduct the comprehensive abla-
tion study on the tissue semantic and nuclei instance segmentation of the PUMA
dataset, as illustrated in Table 4. By removing the tailored modules from Co-Seg,
we construct two independent Hiera ViT-based semantic and instance segmen-
tation networks as the ablation baseline. By introducing the RP-Encoder, the
performance achieves Dice and F1-score increases of 0.25% and 0.66% on tissue
semantic and nuclei instance segmentation, respectively. Moreover, we investi-
gate the effect of combined RP-Encoder and MP-Decoder, resulting in superior
performance, with the Dice of 91.76% and the F1-score of 78.19%. Finally, we es-
tablish the framework using the proposed co-segmentation paradigm. The result
proves that this design can significantly prompt the semantic and instance seg-
mentation capabilities. In this way, these ablation experiments demonstrate the
effectiveness of the RP-Encoder, MP-Decoder and co-segmentation paradigm in
our Co-Seg framework.

4 Conclusion

In this work, we identify the potential relationship between tissue and nuclei
segmentation in histopathology and propose a novel co-segmentation paradigm
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to establish the Co-Seg framework for promoting nuclei and tissue segmen-
tation mutually. It comprises two modules: the RP-Encoder aims to provide
task-specific region prompts by perceiving the target area, and the MP-Decoder
adopts cross-guidance to cooperatively generate tissue and nuclei segmentation
masks. Extensive experiments on the melanoma tissue and nuclei instance seg-
mentation dataset demonstrate that Co-Seg outperforms existing methods by
remarkable margins.

Disclosure of Interests. The authors declare no competing interests.
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