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Abstract. The segmentation of the hepatic vasculature in surgical videos
holds substantial clinical significance in the context of hepatectomy pro-
cedures. However, owing to the dearth of an appropriate dataset and
the inherently complex task characteristics, few researches have been re-
ported in this domain. To address this issue, we first introduce a high
quality frame-by-frame annotated hepatic vasculature dataset containing
35 long hepatectomy videos and 11442 high-resolution frames. On this
basis, we propose a novel high-resolution video vasculature segmentation
network, dubbed as HRVVS. We innovatively embed a pretrained visual
autoregressive modeling (VAR) model into different layers of the hierar-
chical encoder as prior information to reduce the information degradation
generated during the downsampling process. In addition, we designed a
dynamic memory decoder on a multi-view segmentation network to min-
imize the transmission of redundant information while preserving more
details between frames. Extensive experiments on surgical video datasets
demonstrate that our proposed HRVVS significantly outperforms the
state-of-the-art methods. The source code and dataset will be publicly
available at https: //github.com/scott-yjyang/HRVVS.

Keywords: Video Vasculature Segmentation - High-resolution - Visual
Autoregressive Modeling.

1 Introduction

Hepatectomy is a set of surgical procedures for local liver lesions, such as liver
tumors, liver injuries, liver abscesses, and etc.. Given the rich blood supply in the
liver, effective control of bleeding during surgery is pivotal for the success of liver
resection [2,[20]. Specifically, during the operation, surgeons need to focus on two
types of blood vessels, the Glisson sheath and the hepatic vein. The segmentation
of the hepatic vasculature in surgical videos can provide precise positioning for
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Consecutive Frame

Fig. 1. Main challenges in hepatic vasculature segmentation. Fluorescent green shadow
is used to show the location of vasculature in (a) and (b), the arrow and green outline
are used to point to the corresponding location in (c). (a) Discontinuities between
frames and abrupt positional transformations. (b) Significant variations of vessels in
different contexts. (c) Similarities in the outline of vessels and surrounding tissue and
segments by the surrounding tissue.

surgeons to prevent surgical bleeding by hemoclips during hepatectomy, which
makes it has great clinical significance. Nevertheless, the fat and muscle around
the vasculature generate significant redundant information, making the model
difficult to segment the correct tissue in the video. Previous works [9} 24} 25|
in hepatic vascular segmentation mainly focused on medical images from CT
or MRA before surgery. However, these methods can not directly pinpoint the
location of vasculature during the actual surgical procedure. Therefore, we are
considering building a high-resolution video segmentation network to address
this issue. Through collaboration with the hospital, we collect a dataset contain-
ing 35 long high-resolution videos with a total of 11442 frames, which provided
the foundation for our model training. To the best of our knowledge, ours is the
first work dedicated to this task.

In recent years, numerous video segmentation methods have emerged for
medical imaging, exemplified by approaches such as Vivim , which uti-
lizes a state space model, and Ji et al. introduce SUN-SEG dataset for polyp
segmentation in colonoscopy videos, alongside the PNS+ algorithm . Fur-
thermore, the advent of SAM2 has inspired a series of video segmentation
techniques , demonstrating remarkable efficacy in medical video segmen-
tation. However, these methods and their associated datasets are not optimized
for high-resolution tasks, and their performance is often compromised in com-
plex surgical scenarios. In our dataset, the segmentation of hepatic vasculature
presents specific challenges, as illustrated in Fig[I] These include frame disconti-
nuities and abrupt positional changes (Fig[l] (a)), significant variations in vessel
appearance due to differing anatomical contexts and imaging conditions (Fig
(b)), and the similarity between vessel outlines and surrounding tissue, which
can lead to segmentation errors (Fig(l|(c)). These factors complicate the task of
maintaining segmentation continuity and accuracy across frames.
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To address these issues, our approach in designing a high-resolution surgical
video segmentation model focuses on two critical aspects: preserving detailed
features within the current frame and minimizing computational load and cu-
mulative errors from redundant frame-to-frame propagation. For the former, we
employ a pretrained VAR model [21] as residual priors within a hierarchical
encoder framework, refining it through adapter-based training. For the latter,
we introduce a dynamic memory decoder featuring a Multi-view Spatiotempo-
ral Interaction Module (MSIM) and a Dynamically Weighted Fusion Module
(DWFM). Our method demonstrates state-of-the-art performance when bench-
marked against the latest segmentation approaches, effectively overcoming the
identified challenges associated with high-resolution tasks in complex surgical
environments.

In conclusion, our contributions are: (1) We develop a high-resolution
video segmentation model for hepatic vasculature, demonstrating the
effectiveness of VAR in segmentation tasks. (2) We introduce the first high-
resolution video hepatic vasculature segmentation dataset under sur-
gical scene, which can be seen as a benchmark dataset for a completely new
task. (3) Extensive experiments have been conducted on our dataset, demon-
strating the superiority of our proposed method.

2 Method

2.1 Overview

Fig [2| shows the overall framework of the proposed segmentation model. For a
high-resolution frame input, we extract its multi-level features by a dual-branch
encoder based on VAR and Swin Transformer [16]. To tackle the aforementioned
challenges (Fig |1)), we proposes a memory-augmented decoder that integrates
long short-term memory architecture, comprising a Multi-view Spatiotemporal
Interaction Module (MSIM) and a Dynamic Weights Fusion Module (DWFM).
MSIM preliminarily updates the local, global, and historical features through
multi-dimensional spatiotemporal feature interaction mechanisms. The updated
local and global features from MSIM will be sent into the multi-level decoder,
which will also have the residual input from the corresponding layers of the multi-
view encoder. Then we get the local and global features before the last layer of
decoder, and fuse them together with the global feature of the previous frame
from the memory bank as a reference of weights in DWFM. The final prediction
will be obtained from the fused feature of DWFM. The details of each module
are described in the following subsections.

2.2 Dual-branch Residual Prior Encoder

Visual auto-regressive modeling (VAR) [21] is renowned for its scalable auto-
regressive generation capability. Its multi-scale unified quantization enables con-
sistent image representation across different scales, effectively capturing both
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Fig. 2. Pipeline of the proposed HRVVS. Our method comprises three main compo-
nents: (a) “VAR Branch”, a multi-scale generation branch based on visual autoregressive
modeling equipped with adapters. (b) “Multi-view Branch” is based on a hierarchi-
cal encoder with five different views of the current frame. (¢) the “Dynamic Memory
Decoder” is a decoder of our network, which includes a multi-scale decoder, a mem-
ory bank, a Multi-view Spatiotemporal Interaction Module (MSIM), and a Dynamic
Weights Fusion Module (DWFM). Below the pipeline we show the detailed structure
of the MSIM and DWFM.

global context and fine-grained details. By extracting hierarchical features from
the VAR branch and incorporating them as residual priors into the downsam-
pling layers of the multi-view branch, VAR enhances the information flow within
the multi-view branch, improving feature representation.

Given a specific frame I; € R*>**W in an HR video V = {I; | i =
1,2,--- ,n}, we extract its hierarchical features separately through the VAR
branch and multi-view branch, and add the multi-scale features from VAR
branch as residual priors to the downsampling layers of multi-view branch. In
the multi-view branch, we process high-resolution images by performing cen-
ter quartering operations and downsampling on I; respectively to obtain the
local view {L;,}4_; € R¥*"*% and global view G € R3*"*% of [, respec-
tively, where (H,W) = (2h,2w). Then we get the features from the encoder
{Firs o ={{L: }E_,,G'}, where i € [1,5] represents features extracted from

the i-th layer of encoder. In the VAR branch, by using the pre-trained VQ-VAE
and VAR weights, we freeze the backbone network, and finetune adapters incor-
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porated between the VAE encoder and the VAR transformer blocks. As shown
in Eq.[I} A and T represent the VAR adapter and VAR transformer block re-
spectively, respectively, while 6 4 represents the learnable parameters in A:

Tk:A(T([SLThT?v"' ’Tk—l);aA)~ (1)

Another adapter is adopted to project VAR features into multi-view latent space.
We denote the fused features as F'* € {£*,G’"} and store G’* in the memory
bank as the current frame global feature.

2.3 Multi-view Spatiotemporal Interaction Module

To update the multi-view features and the global features from the memory bank,
we have designed a Multi-view Spatiotemporal Interaction Module (MSIM). In-
spired by |13[23], we update the local and global features by a multi-head cross-
attention (MHCA). Before the multi-view interaction process, we introduce the
multi-scale memory features as the reference to update the global features. As
shown in Fig[2l the MSIM module effectively combines {£/> }* _, and G’° using
a MHCA mechanism. During the forward propagation, {£'> }% _, are first rear-
ranged and position-encoded. When the number of historical frames reaches the
upper bound, the historical frames are downsampled and position-encoded to
generate multi-scale memory concatenated tokens H,,. MHCA is then employed
to compute the attention for the historical frames, thereby updating the global
features G° as Eq. [2| where @ are the tokens from G’ 5, and K and V are H,:

Gn = G"° + Dropout (MHCA (Q, K, V), (2)

Next, the local features of the current frame are pooled to generate features at
different scales. We also use MHCA to further update the global feature G, and
get Grmsim, which is updated by {£’ fn 4 _1. In another branch, we concatenate
{£’ il 4 _, with position encoding ppeses and calculate MHCA on the Gpsim
to obtain the updated local feature (equation . The updated local features
{Lmism}t,_; are then rearranged and concatenated with the updated global
features to be the input of the decoder:

{ETYLiS”L}ﬁ@:l = {ﬁfn ;lnzl + DI‘OpOut (MHCA (va K + pposeSa V)) . (3)

2.4 Dynamic Weights Fusion Module

Inspired by [14}22,126], we proposed DWFM. Specifically, we further divide the
4 local features into 4 x 16 small patches, and assign corresponding weights to
each patch, to reduce the boundary fragmentation caused by local attempts to
directly aggregate. We take each local patch as @ and calculate MHCA with
the current global feature and the last global feature separately, obtaining the
corresponding importance weights W}inal.

Excessive focus on the global features of the current frame can lead to a
loss of optical flow connection in adjacent frames. We compute Weights A and
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Weights B from the current global feature P, and the previous global feature
Pi_1, labeling them as W and W} for the t-th frame, respectively. For the first
frame in each video, only 1ts global weight WO is calculated, and it is stored as
the historical weight Wh for the next frame’s prediction. For each subsequent
frame’s patches, the weight score of each patch is continuously updated based
on the historical weight W}, the current global feature weight W" and the
previous frame’s weight W}. The expressions for updating historical welghts and
calculating current weights are shown in equations [4 and [5] respectively.

The prediction result of the previous frame should be given attention be-
cause there is often a clear optical-flow connection between adjacent frames, and
excessive attention to the global features of the current frame can cause the
segmentation result to lose this connection. The Weights A and Weights B are
calculated from the current global feature P; and the last global feature P;_q,
and marked as Wt and W} for t-th frame respectively. For the patches of the
first frame in each video, we only calculate its global weights WO and save it as
the history weights W} of the next frame prediction. For patches of each follow-
ing frame, we continuously update the weight score of each patch based on the
historical weight score W}, the current weight score of global feature W;, and
the weight score of the last frame W. The historical weights update and current
weights calculation expressions are respectively shown in Eq. [f] and [5]

WY, t=0
W}inal: g t t + ) (4)
ax Wi +BxWy+yxW,, t>0

Wit =6 x W] + (1= 6) x Whipar- (5)

3 Experiments

3.1 Dataset and Experimental Settings

Hepa-SEG Dataset. We introduce Hepa-SEG, the first vasculature segmen-
tation dataset for hepatectomy. The dataset consists of 35 hepatectomy videos,
totaling 11,442 frames with a resolution of 1080x1920. Each video contains ap-
proximately 8 minutes of continuous frames from the liver transection stage,
where every frame is manually annotated. The dataset includes two vasculature
types: the Glisson sheath and the hepatic vein. The data is randomly split into
training, validation, and test sets with a ratio of 7:1:2.

Implementation Details. All experiments are conducted on a single NVIDIA
A800 GPU. Our model is trained for 15 epochs with a batch size of 32. A sliding
window sampler is used to ensure that each batch contains consecutive frames.
We optimize the model using Adam with an initial learning rate of 1 x 107°,
which is decayed using a polynomial scheduler with a decay rate of 0.9.
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Table 1. Quantitative Comparison with Different Methods on Hepa-SEG. The best
values are highlighted in bold. 1 denotes that a higher score is better.

Methods Venue |Type|Jaccard T|Dice 1| So 1 | Fg' 1T |Eg™ T
PraNet |7] MICCAIy|image| 0.3569 |0.4586|0.6875|0.5124 | 0.8135
LDNet |30 MICCAIy|image| 0.2322 0.2929 |10.8355| 0.2798 | 0.8331
ISNet |18] ECCVa |image| 0.1982 [0.2576|0.7854 |0.2710|0.8103
HitNet [11] AAAI; |image| 0.4481 |0.5700|0.4851 |0.5434 | 0.8276
SLT-Net [3] CV PRy |video| 0.2825 [0.4904 |0.6521 |0.4097 | 0.6729
Vivim [28] TCSVTzs |video| 0.4480 |0.5801|0.7511|0.5801 | 0.8380
Med-SAM2 [31] | Arzives |video| 0.3470 |0.4555|0.6728 | 0.4552 | 0.5268
SALI [10] MICCAIy|video| 0.5239 |0.6424|0.7748|0.6496 | 0.8405
MemSAM |[4] CV PR24 |video| 0.1337 [0.2126 |0.4642 | 0.2369 | 0.4683
HRVVS(Ours) - video| 0.5405 [0.6532|0.7878|0.6769|0.8711

3.2 Comparisons with State-of-the-Arts

Baselines and Metrics. We evaluate HRVVS against nine state-of-the-art
segmentation methods on the Hepa-SEG dataset, including four image-level
and five video-level approaches. Specifically, the baselines comprise two high-
resolution segmentation methods (i.e., HitNet [11] and ISNet [29]), six medical
image segmentation methods (i.e., PraNet [7], LDNet [30], Vivim [28], Med-
SAM2 [31], SALI [10], and MemSAM |[4]), and one general segmentation method
(i.e., SLT-Net [8]). For quantitative evaluation, we adopt five commonly used
metrics |17]: Jaccard index, Dice coefficient, Structure-measure (S, ) [5], F-measure
(£%) 1], and Enhanced-alignment measure (£3") [6].

Quantitative Comparison. As shown in Table[I} our proposed HRVVS achieves
state-of-the-art performance on the Hepa-SEG dataset, outperforming all base-
lines across most metrics. Specifically, compared to the best-performing baseline,
HRVVS achieves a relative improvement of +3.16% in Jaccard index, +1.68%
in Dice coefficient, +4.20% in F-measure, and +3.60% in Enhanced-alignment
measure. The only exception is the S-measure, where LDNet achieves a slightly
higher score (0.8355 vs. 0.7878). However, LDNet exhibits a significantly lower
Dice coefficient (0.2929), indicating that while it maintains high local consis-
tency, it struggles to segment the complete target region (see Fig. . Addition-
ally, methods such as MemSAM and LDNet, which are optimized for ultrasound
image segmentation, perform poorly on Hepa-SEG. This highlights the unique
challenges posed by our dataset, where both spatial continuity and fine-grained
vessel structures are critical for accurate segmentation.

Qualitative Comparison. In Fig. we visualize the segmentation results
of HRVVS alongside state-of-the-art methods on Hepa-SEG. HRVVS effectively
captures fine details of hepatic vasculature, demonstrating superior segmentation
accuracy and robustness in complex surgical scenes.
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3.3 Ablation Experiments

We conduct the ablation study to evaluate the effectiveness of three main mod-
ules (i.e., the VAR branch, the MSIM module, and the DWFM module), and
report the results in Tab

Table 2. Ablation study on Hepa-SEG dataset. "VAR" denotes the VAR branch,
MSIM and DWFM are two modules introduced above.

Design[ VAR MSIM DWFM |Jaccard 1|Dice 1| So 1t | F§ 1 [E3™ 1

basic | - - - 0.4938 [0.6122[0.7515[0.6311 [ 0.8189
ML | Vv v - 0.4994 |0.6233 | 0.7603 | 0.6307 | 0.8222
M2 | v - v 0.5332 | 0.6442 | 0.7771 | 0.6712 | 0.8615
M3 | - v v 0.5242 | 0.6384 | 0.7757 | 0.6613 | 0.8619
Ours | V v v | 0.5405 [0.6532/0.7878|0.6769/0.8711

In this ablation study, we evaluate the impact of key components in our model
on the Hepa-SEG dataset, specifically the VAR branch, Multi-scale Integration
Module (MSIM), and Dynamic Weighted Feature Module (DWFM).

The baseline model, which excludes all three components, achieves a Jaccard
index of 0.4938, a Dice coefficient of 0.6122, an S, score of 0.7515, an Fg score
of 0.6311, and an EF'™ score of 0.8189. Adding only the VAR branch and MSIM
(Model M1) slightly improves performance (Jaccard: 0.4994, Dice: 0.6233), sug-
gesting their individual contributions are modest.

Incorporating VAR with DWFM (Model M2) leads to more substantial im-
provements (Jaccard: 0.5332, Dice: 0.6442), emphasizing DWFM’s effectiveness
in feature refinement. Similarly, using MSIM and DWFM together (Model M3)
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enhances performance, though slightly less than M2. Finally, integrating all three
components in the full model achieves the highest performance (Jaccard: 0.5405,
Dice: 0.6532), demonstrating their complementary roles in improving segmenta-
tion accuracy.

4 Conclusion

This paper presents the first hepatic vasculature segmentation dataset under sur-
gical video scenes, and a matching method based on hierarchical autoregressive
residual priors. To address challenges in high-resolution surgical hepatectomy
videos, our method proposes a VAR branch and a dynamic memory mechanism
to embed them into a multi-view segmentation network. Experiments demon-
strate that our HRVVS is capable of state-of-the-art results on Hepa-SEG and
can be a critical baseline for video vasculature segmentation.
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