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Abstract. By leveraging complementary Euclidean and graph-based spatial in-
formation from structural Magnetic Resonance Imaging (sMRI), the effective fu-
sion of multi-spatial brain features holds the potential to enhance the classifica-
tion accuracy for Alzheimer’s Disease (AD). Existing deep learning models often 
rely on simplistic methods such as concatenation, weighted summation, and self-
attention to integrate Euclidean and graph spatial features. However, these mod-
els neglect the causal relationships between feature domains and labels, resulting 
in redundancies and limiting the classification accuracy. In this study, we propose 
a Multi-Spatial Granger Causality Features Fusion Network (MSGCFNet). Spe-
cifically, the MSGCFNet consists of a Multi-Spatial Features Encoder (MSFEN) 
module that extracts Euclidean and graph spatial features, a Multi-Spatial 
Granger Causality Features Disentanglement (MSGCFD) module that uses 
Granger causality-based learning to disentangle the causal dependencies within 
Euclidean and graph spatial features, and a Multi-Spatial Features Fusion Classi-
fication (MSFFC) module that employs a bidirectional cross-attention mecha-
nism to robustly fuse the disentangled features from the two spatial features. Ad-
ditionally, we design a multi-spatial Granger causal contrast disentanglement loss 
function that effectively minimizes the bias and redundancy of the disentangled 
features. Experimental results demonstrate that MSGCFNet achieves classifica-
tion accuracies of 93.6% for Alzheimer's Disease (AD) vs. Normal Controls (NC) 
and 83.4% for Early Mild Cognitive Impairment (EMCI) vs. Late Mild Cognitive 
Impairment (LMCI) tasks, highlighting its superior classification performance. 
The code is available at https://github.com/FindBrain/MSGCFNet. 

Keywords: Granger causality, multi-spatial features fusion, sMRI, Alzheimer’s 
disease. 

1 Introduction 

Structural magnetic resonance imaging (sMRI) [1] is a cornerstone in Alzheimer's dis-
ease (AD) diagnosis due to its clinical accessibility and ability to detect brain atrophy 
[2]. In deep learning-based methods for AD diagnosis, Convolutional neural networks 
(CNNs) [3,4] typically characterize the gray matter volume (GMV) [5] of Euclidean 
spatial in sMRI, while graph neural networks (GNNs) [6,7] characterize morphological 
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brain networks [8,9] in graph space. However, these studies primarily focus on features 
within a single spatial domain, neglecting the potential benefits of integrating comple-
mentary information from both spatial representations, and preventing the full utiliza-
tion of sMRI's diagnostic potential for AD. 

Recent studies have increasingly explored the use of deep learning technology to 
leverage multi-spatial brain features from sMRI for enhancing Alzheimer's disease 
(AD) diagnosis [10-12]. For instance, in [10], the author proposed a two-channel Euro-
pean-graph spatial feature representation framework based on CNN-Transformer and 
GCN models for early AD diagnosis. In [11], the author developed a multi-spatial in-
formation fusion framework, incorporating key brain regions via multi-scale CNN and 
GCN models, to improve AD classification performance. However, existing fusion 
models often ignore the causal relationships between different spatial features and tar-
get labels, leading to redundancies and biases. Furthermore, these fusion approaches 
often rely on simplistic methods such as concatenation, addition or attention, which fail 
to capture the complex nonlinear interactions between features, limiting the models’ 
ability to make full use of complementary information. 

To address these challenges, we propose a Multi-Spatial Granger Causality Feature 
Fusion Network (MSGCFNet), which leverages Granger causality-based learning to 
enhance the integration of causal features from both Euclidean and graph spaces. Our 
approach effectively disentangles these features while preserving causal relationships, 
minimizing bias, and reducing redundancy. By focusing on causal dependencies, only 
the most relevant and non-redundant information is retained during the diagnostic pro-
cess. Furthermore, a bidirectional cross-attention mechanism is employed to robustly 
fuse the decoupled features, capturing complex cross-domain interactions between Eu-
clidean and graph spatial attributes in sMRI data. 

In summary, the contributions of our work are as follows:  
1) We propose MSGCFNet, a deep learning framework for multi-spatial brain fea-

ture integration that leverages Granger causality-based learning to preserve causal 
dependencies from multi-spatial features and a bidirectional cross-attention mech-
anism to capture complex cross-domain interactions, thereby enhancing AD di-
agnosis. 

2) We design a Multi-spatial Granger causal contrast disentanglement loss function 
to ensure the preservation of relevant and non-redundant information from both 
Euclidean and graph spatial features. 

3) MSGCFNet incorporates a bidirectional cross-attention mechanism to capture 
complex interactions between the decoupled causality features, enhancing the 
ability of multi-spatial feature fusion to improve AD classification accuracy. 

2 Methodology 

As illustrated in Fig.1, the proposed MSGCFNet consists of three parts: (1) Multi-Spa-
tial Features Encode (MSFEN) module that extracts both Euclidean spatial features 
from gray matter volume (GMV) and the graph spatial features from the Regional Ra-
diomics Similarity Network (R2SN) [8] (Fig. 1a); (2) Multi-Spatial Granger Causality 
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Features Disentanglement (MSGCFD) module that disentangles the causality features 
related to AD classification from GMV and R2SN (Fig. 1b); (3) Multi-Spatial Features 
Fusion Classification (MSFFC) module that fuses the features of the Euclidean and 
graph spaces (Fig. 1c). 

 
Fig. 1. Architecture of the proposed MSGCFNet model. (a) Multi-Spatial Features Encoder 

Module; (b) Multi-Spatial Granger Causality Features Disentanglement Module; (c) Multi-Spa-
tial Features Fusion Classification Module. 

2.1 Multi-Spatial Features Encoder Module 

To represent the Euclidean spatial features, we adopt the ResNet model [13] as the 
backbone network to extract the initial latent features 𝑍𝑍𝐸𝐸 from the GMV. As shown in 
Fig.2 and Fig.1(a), the Euclidean spatial encoder includes two modules. Module 1, be-
fore the first ResBlock, consists of instance normalization, 3D convolution, batch nor-
malization, ReLU activation, and average pooling. Module 2 includes eight ResBlocks, 
each with two 3×3×3 convolutions, one 1×1×1 convolution, three batch normalizations, 
two ReLU activations, and residual connections. Three-dimension GMV images is used 
as inputs, denoted as 𝐼𝐼 ∈ 𝑅𝑅𝐶𝐶×𝐿𝐿×𝑊𝑊×𝐻𝐻  (𝐶𝐶 × 𝐿𝐿 × 𝑊𝑊 × 𝐻𝐻 represents the channels, length, 
width, and height of the images, respectively.). Finally, we formulate the above feature 
learning process as shown in Equation (1) 

 𝑍𝑍𝐸𝐸 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑑𝑑𝑢𝑢𝑢𝑢𝑢𝑢�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑑𝑑𝑢𝑢𝑢𝑢𝑢𝑢(𝐼𝐼)�, (1) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(·) represents the Module 1 part in Fig.2, and Resblock Module 
(·) represents the Module2 part in Fig.2. Finally, the Euclidean latent feature 𝑍𝑍𝐸𝐸 was 
obtained from Euclidean spatial encoder. 
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Fig. 2. Architecture of the Euclidean Spatial Encoder 

Additionally, as shown in Fig.3 and Fig.1(a), a graph spatial encoder is used to learn 
the relationship between node features 𝑋𝑋 ∈ 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜×𝑅𝑅𝑅𝑅𝑅𝑅  (where 𝑅𝑅𝑜𝑜𝑜𝑜 represents the num-
ber of brain regions, and 𝑅𝑅𝑅𝑅𝑅𝑅 represents the number of radiomics features per region) 
and edges of the R2SN [8] 𝐴𝐴 ∈ 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜×𝑅𝑅𝑜𝑜𝑜𝑜  based on GCN [14]. Specifically, the graph 
spatial encoder consists of two GCN modules. Each GCN module includes a GCN 
layer, a layerNorm, and a LeakyReLU activation layer. The GCN operation generalizes 
the traditional convolution operator to graph data by defining a filter in the graph spec-
tral domain, and the calculation process of the convolution operator encoding node fea-
tures is shown in Equation (2): 

 𝑍𝑍𝐺𝐺 = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜(𝜎𝜎 �𝐴̂𝐴𝜎𝜎�𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜�𝐴̂𝐴𝑋𝑋𝑊𝑊(0)�)𝑊𝑊(1)��, (2) 

where 𝐴̂𝐴 is the Laplacian-normalized adjacency matrix derived from 𝐴𝐴, 𝑊𝑊(·) is a train-
able matrix. 𝜎𝜎(·) represents the LeakReLU activation function. Finally, we obtained 
the latent feature 𝑍𝑍𝐺𝐺 in the graph structural data. 

 
Fig. 3. Architecture of the Graph Spatial Feature Encoder 

To resolve the size mismatch between 𝑍𝑍𝐸𝐸 ∈ 𝑅𝑅𝑁𝑁×256×1×1×1 and 𝑍𝑍𝐺𝐺 ∈ 𝑅𝑅𝑁𝑁×90×25, fea-
ture transformation is applied. Specifically, after Euclidean encoding, two independent 
3D convolutions and feature flattening transform 𝑍𝑍𝐸𝐸  into 𝑍𝑍𝐸𝐸𝛼𝛼 ∈ 𝑅𝑅𝑁𝑁×256  and 𝑍𝑍𝐸𝐸𝛽𝛽 ∈
𝑅𝑅𝑁𝑁×256 (where 𝑁𝑁 represent batch size). Similarly, after graph spatial encoding, two in-
dependent graph convolutions, feature flattening and fully connected (FC) layers are 
applied to transform 𝑍𝑍𝐺𝐺 into 𝑍𝑍𝐺𝐺𝛼𝛼 ∈ 𝑅𝑅𝑁𝑁×256 and 𝑍𝑍𝐺𝐺𝛽𝛽 ∈ 𝑅𝑅𝑁𝑁×256.  
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2.2 Multi-Spatial Granger Causality Features Disentanglement Module 

In the context of joint representation of both Euclidean and graph space, the model aims 
to disentangle potential features that are related and unrelated to label Y. Therefore, it 
is crucial to extract the underlying causality characteristics of both spatial types from 
the backbone network. Therefore, we design a Multi-Spatial Granger Causality Fea-
tures Disentanglement (MSGCFD) module, which is conducted on a multi-spatial 
Granger causal contrast disentangling loss function (𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), which includes multi-spa-
tial Granger causal disentanglement loss function (𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), multi spatial contrastive 
loss function (𝐿𝐿𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐e) and Binary CrossEntropy loss function [15] (𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵). The 
potential features related to Y in Euclidean and graph spaces are disentangled through 
Granger causal calculation and contrast learning, effectively reducing the influence of 
redundant information on the target task label 𝑌𝑌. Additionally, the AD diagnostic task 
label is denoted as 𝑌𝑌. 

For the 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , the causal graph in Fig.1(b) illustrates the causal relationships. 
Specifically, we assume that the input Euclidean features 𝑍𝑍𝐸𝐸 and graph features 𝑍𝑍𝐺𝐺 are 
influenced by latent factors 𝛼𝛼 (represented as 𝑍𝑍𝐸𝐸𝛼𝛼 and 𝑍𝑍𝐺𝐺𝛼𝛼) and 𝛽𝛽 (represented as 𝑍𝑍𝐸𝐸𝛽𝛽 
and 𝑍𝑍𝐺𝐺𝛽𝛽). Here 𝛼𝛼 encapsulates the latent factors that have a direct causal relationship 
with the target label 𝑌𝑌, while 𝛽𝛽 represents latent factors that exhibit a spurious correla-
tion with 𝑌𝑌. Therefore, we assume that the latent factors 𝛼𝛼 and 𝛽𝛽 are disentangled or 
independent, such that 𝛼𝛼 has a direct causal impact on label 𝑌𝑌. Therefore, based on the 
proofs provided [16] and [17], we design the multi-spatial granger causal disentangle 
loss function (called 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) to calculate the potential features in the label-related 
Euclidean and graph spaces. 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  can be defined as: 

 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐼𝐼�𝑍𝑍𝐸𝐸𝛼𝛼;𝑍𝑍𝐸𝐸𝛽𝛽� + 𝐼𝐼�𝑍𝑍𝐺𝐺𝛼𝛼;𝑍𝑍𝐺𝐺𝛽𝛽� − 𝐼𝐼�𝑍𝑍𝐸𝐸𝛼𝛼;𝑌𝑌|𝑍𝑍𝐸𝐸𝛽𝛽� − 𝐼𝐼�𝑍𝑍𝐺𝐺𝛼𝛼;𝑌𝑌|𝑍𝑍𝐺𝐺𝛽𝛽�, (3) 

 𝐼𝐼(𝛼𝛼;𝛽𝛽) = 𝐻𝐻(𝛼𝛼) + 𝐻𝐻(𝛽𝛽) − 𝐻𝐻(𝛼𝛼,𝛽𝛽), (4) 

 𝐼𝐼(𝛼𝛼;𝑌𝑌|𝛽𝛽) = 𝐻𝐻(𝛼𝛼|𝛽𝛽) −𝐻𝐻(𝛼𝛼|𝑌𝑌,𝛽𝛽) = 𝐻𝐻(𝛼𝛼,𝛽𝛽) + 𝐻𝐻(𝑌𝑌,𝛽𝛽) − 𝐻𝐻(𝛽𝛽) − 𝐻𝐻(𝛼𝛼,𝑌𝑌,𝛽𝛽), (5) 

where 𝐼𝐼(·;·) denotes mutual information and 𝐻𝐻(·) denotes entropy or joint entropy. 

2.3 Multi-Spatial Features Fusion Classification Module 

MSGCFD disentangled the Euclidean spatial features 𝑍𝑍𝐸𝐸𝛼𝛼 and graph spatial features 
𝑍𝑍𝐺𝐺𝛼𝛼 related to the target task through 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 . To enhance the interaction between 
features, we propose a Multi-Spatial Features Fusion Classification (MSFFC) module 
based on a multi-spatial bidirectional cross-attention module (Fig.1(c)) for effectively 
fusing Euclidean and graph spatial features, resulting in the fused features 𝑍𝑍𝐸𝐸𝐸𝐸𝛼𝛼.  
Furthermore, to reduce the impact of irrelevant features 𝑍𝑍𝐸𝐸𝛽𝛽 and 𝑍𝑍𝐺𝐺𝛽𝛽 on the fused fea-
tures 𝑍𝑍𝐸𝐸𝐸𝐸𝛼𝛼, we introduce a multi spatial contrastive loss function (called 𝐿𝐿𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
to diminish the relationship between 𝑍𝑍𝐸𝐸𝐸𝐸𝛼𝛼, 𝑍𝑍𝐸𝐸𝛽𝛽, and 𝑍𝑍𝐺𝐺𝛽𝛽. Finally, the fused features 
𝑍𝑍𝐸𝐸𝐸𝐸𝛼𝛼 are passed through a multi-layer perceptron (MLP) [18] for the subsequent clas-
sification task, enabling more precise task-driven feature representations. Bidirectional 
cross-attention and 𝐿𝐿𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  formulas are defined as: 
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 𝑍𝑍𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑄𝑄𝐸𝐸𝐸𝐸𝐾𝐾𝐺𝐺𝐺𝐺
𝑇𝑇

�𝑑𝑑𝑘𝑘
� 𝑉𝑉𝐺𝐺𝐺𝐺 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑄𝑄𝐺𝐺𝐺𝐺𝐾𝐾𝐸𝐸𝐸𝐸

𝑇𝑇

�𝑑𝑑𝑘𝑘
� 𝑉𝑉𝐸𝐸𝐸𝐸 , (6) 

 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 1
𝑁𝑁
∑  𝑁𝑁
𝑖𝑖=1 �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆(𝑖𝑖)(𝑍𝑍𝐸𝐸𝛼𝛼 ,𝑍𝑍𝐸𝐸𝐸𝐸𝛼𝛼)) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆(𝑖𝑖)(𝑍𝑍𝐺𝐺𝐺𝐺 ,𝑍𝑍𝐸𝐸𝐸𝐸𝐸𝐸)) −

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆(𝑖𝑖)�𝑍𝑍𝐸𝐸𝛼𝛼 ,𝑍𝑍𝐸𝐸𝛽𝛽�) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆(𝑖𝑖)�𝑍𝑍𝐺𝐺𝐺𝐺 ,𝑍𝑍𝐺𝐺𝛽𝛽�)�, (7) 

where 𝑆𝑆(𝑖𝑖)  represents the cosine similarity calculation of sample 𝑖𝑖 , 𝜎𝜎(·) denotes the 
Sigmoid function.  

The Binary CrossEntropy (BCE) loss function [15] is used to optimize the classifi-
cation task. To sum up, the proposed multi-spatial granger causal contrastive loss 
(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) is shown as follows: 

 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜆𝜆(𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), (8) 

where 𝜆𝜆 is the hyper-parameter. 

3 Experiments 

3.1 Dataset and Pre-processing 

We selected 1,481 subjects from the Alzheimer’s Disease Neuroimaging Initiative da-
tabase (ADNI) database (http://adni.loni.usc.edu) (Table 1). Gray matter volume 
(GMV) maps were segmented from 1.5T T1-weighted scans using CAT12, bias-cor-
rected, and registered to MNI space, resliced to 2 mm³ isotropic voxels. Following [8], 
twenty-five Radiomics features were calculated for 90 AAL-derived regions, normal-
ized via min–max scaling, and the R2SN [8] (90 × 90) was generated by Pearson cor-
relation based on Radiomics features. 

Table 1. Demographic information about the database of ADNI. 

Group Participants Sex (M/F) Age (years) 
NC  603 277/326 73.46±6.16 
AD  282 151/131 74.91±7.69 

EMCI 240 129/111 70.89±7.68 
LMCI  356 225/131 73.77±7.87 

3.2 Implementation Details 

The experiments were implemented on Pytorch 1.9.1. The hyperparameters were opti-
mized with Adam optimizer with a learning rate equal to 3 × 10-4 and a weight decay 
rate equal to 1 × 10-4. The batch size was set to 8 to fit the GPU memory. The training 
epochs was set to 100. 𝜆𝜆 in Eq.8 were experimentally set to 0.05, respectively. 

http://adni.loni.usc.edu/
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3.3 Comparative Analysis of Classification Performance 

To compare classification performance, we conducted experiments using Euclidean 
spatial features of GMV feature maps, the graph spatial features of R2SNs, and their 
combination. For GMV maps, we compared four deep learning models: 3D VGG16 
[19], 3D ResNet [13], 3D Attention Network (3DAN) [20], and Resnet-Transformer 
(ResTransformer) [10]. For the R2SN network, we compared five GNN models: Graph 
Convolutional Network (GCN) [14], Graph Attention Network (GAT) [21], GraphSage 
[22], GraphTransformer [23], and BC-GCN [24]. For the combined multi-spatial fea-
tures, we compared two recently models: s2MRI-ADNet [10] and MSRNet [11]. Table 
2 summarizes the experimental results for the AD vs NC and LMCI vs EMCI tasks 
within the ADNI database under the 10-fold cross-validation. The proposed model 
achieved accuracy (ACC) of 93.6%, F1 score of 90.0%, and an area under the receiver 
operating characteristic curve (AUC) of 96.4% for the AD vs NC task. For the LMCI 
vs EMCI task, the model reached an ACC of 83.4%, F1 score of 85.9%, and AUC of 
90.4%. The diagnostic classification of the proposed model outperforms all comparison 
models. 

Table 2. Comparison of the proposed model with other deep learning-based methods in classi-
fying AD vs NC and LMCI vs EMCI. The best result is in bold. 

Feature Model AD vs NC  LMCI vs EMCI 
ACC (%) F1 (%) AUC (%)  ACC (%) F1 (%) AUC (%) 

R2SN 

GCN 81.0±3.7 66.6±6.9 86.3±3.5  76.8±4.5 77.9±3.9 82.0±3.9 
Graphsage 81.5±3.2 62.6±5.0 88.4±3.3  74.5±4.1 78.2±3.5 82.1±2.6 

GAT 82.3±3.3 68.5±6.5 88.8±4.0  73.7±4.0 79.1±2.0 79.8±4.1 
GraphTransformer 81.4±5.0 62.9±12.0 87.4±4.0  66.3±4.2 74.4±3.5 77.3±4.6 

BC-GCN 87.2±3.0 78.2±4.9 92.3±3.4  73.8±5.0 80.1±2.5 77.9±11.5 

GMV 

3D VGG16 89.1±3.8 82.1±7.1 94.7±2.6  79.2±5.3 82.4±5.2 86.5±3.6 
ResNet 88.5±4.2 79.9±8.6 94.8±2.4  77.9±4.6 81.0±4.5 86.6±3.9 
3DAN 88.1±3.9 80.2±8.4 93.5±3.2  78.7±5.1 81.9±5.1 87.4±4.1 

ResVIT 89.0±2.6 81.8±5.1 94.8±2.6  75.5±6.1 79.2±5.1 81.0±6.0 

Combination 
s2MRI-ADNet 92.1±2.3 87.7±3.5 96.2±1.5  79.1±4.9 81.7±4.8 86.6±3.8 

MSRNet 92.8±1.8 88.5±2.9 95.6±1.1  79.8±3.3 82.5±2.5 87.1±3.1 
MSGCFNet 93.6±2.7 90.0±3.7 96.4±2.5  83.4±2.1 85.9±1.8 90.4±4.3 

3.4 Ablation Analysis 

To evaluate the classification performance of the different modules in the proposed 
MSGCFNet, we consider several configurations where the MSFEN module, the 
MSGCFD module, and the MSFFC module are either included or excluded (Table 4). 
The results show that the best performance is achieved when the three modules are fully 
integrated. 

To further validate our proposed fusion approach with causality considerations, Fig.4 
presents a t-test violin plot illustrating the differences (including the absolute t-values 
and p-values) between causal and non-causal features in the AD vs. NC groups and the 
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LMCI vs. EMCI groups. As shown in Fig.4, compared with the 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 only and the 
𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵  only, the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  can obtain more significant differences (p<0.0001). In sum-
mary, the experimental results in Fig.4 demonstrated the superiority of the proposed 
loss function 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  in improving multi-spatial features fusion and for diagnostic 
tasks. 

Table 3. Ablation results about different modules of the proposed MSGCFNet. 

Model 
AD vs NC  LMCI vs EMCI 

ACC (%) F1 (%) AUC (%)  ACC (%) F1 (%) AUC (%) 
MSFEN 90.1±3.5 84.2±5.6 94.8±2.4  77.1±2.6 79.5±2.7 87.2±2.3 

MSFEN+·MSGCFD  90.2±3.2 84.5±5.0 95.5±3.0  79.8±4.5 82.6±3.9 86.0±4.1 
MSFEN+MSFFC 91.3±3.2 85.9±5.6 95.9±2.9  81.6±4.4 84.4±4.0 88.2±4.2 

MSGCFNet 93.6±2.7 90.0±3.7 96.4±2.5  83.4±2.1 85.9±1.8 90.4±4.3 

 
Fig. 4. Violin Plot of Feature Disentanglement Analysis with Different Loss Functions. 

4 Conclusion 

In summary, the proposed Multi-Spatial Granger Causality Feature Fusion Network 
(MSGCFNet) effectively integrates multi-spatial brain features between Euclidean and 
graph spatial domains from sMRI. Furthermore, the MSGCFNet disentangle causal de-
pendencies between different feature domains and robustly fuse them using a bidirec-
tional cross-attention mechanism. The experimental results show that the MSGCFNet 
exhibits a superior performance to other models in AD classification. 
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