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Abstract. Deep learning techniques have been widely applied to lung
nodule malignancy prediction tasks. Recently, the emergence of Vision-
Language Models (VLMs) has enabled the use of textual information,
further improving diagnostic accuracy. Nevertheless, two key limitations
persist: (1) the insufficient utilization of clinical data to enhance comput-
er-aided diagnosis, and (2) the limited ability of existing frameworks to
leverage similar cases in the diagnostic process. To address these issues,
we propose a clinical data-driven, retrieval-augmented VLM framework
for lung nodule malignancy prediction. The proposed framework com-
prises a multimodal encoder, a retrieval-augmented module, and a text
encoder. Lesion classification is achieved by evaluating the similarities
between the combined visual and clinical data features and the text fea-
tures of predefined categories, thereby establishing a robust mechanism
for malignancy prediction. Moreover, the retrieval-augmented module
further refines the prediction process by incorporating similar cases re-
trieved using clinical data as a query, thus facilitating more informed
and accurate decisions. Overall, this framework comprehensively uti-
lizes clinical data by integrating it into CT image features and enabling
cross-interaction in the retrieval-augmented module to support diagnosis
with similar cases. Experimental results on the publicly available LIDC-
IDRI dataset demonstrate that the proposed framework achieves sig-
nificant improvements in lung nodule malignancy prediction, with an
approximate 3% increase in accuracy. Our code is released on Github:
https://github.com/chenn-clear/ClinicalRA.

Keywords: Lung nodule classification - vision-language model - retrie-
val-augmented method.

1 Introduction

Lung cancer remains one of the most prevalent cancers worldwide, with the
classification of lung nodules in chest CT images being a critical step for early
detection and improved survival rates. In recent years, deep learning [1,2,9,
10] has been extensively applied to this task, significantly advancing the per-
formance of automated diagnostic systems. Early approaches typically framed
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Fig. 1: Inspired by the diagnostic practices of radiologists, who rely on past simi-
lar cases for diagnosis, we propose a retrieval-augmented approach that enhances
model predictions by leveraging similar samples.

lung nodule malignancy prediction as a binary classification problem [9, 16], dis-
tinguishing between benign and malignant cases. To better capture the gradual
progression of disease severity, several studies have explored ordinal regression [4,
20] in medical imaging [11, 14|, and reformulated the malignancy prediction task
as a three-class classification problem by introducing an intermediate “unsure”
category to account for diagnostic ambiguity.

Despite these advancements, significant challenges remain. A major issue is
the underutilization of clinical data provided by radiologists, which often con-
tains highly abstract and semantic-rich information capable of differentiating
nodules with similar visual appearances but distinct pathological outcomes. To
address this issue, CLIP-Lung [8] employed a Vision-Language Model (VLM)
based on CLIP [13] to align textual representations of categories, visual features
of CT images, and text information derived from clinical data. This approach
demonstrated the potential of leveraging clinical data to capture abstract mor-
phological features of lung nodules, thereby further improving diagnostic accu-
racy.

In clinical practice, radiologists often reference past similar cases to enhance
diagnostic accuracy. Apart from above discussed methods, recent advances in
retrieval-augmented approaches from Natural Language Processing (NLP) have
begun to be adopted in VLM tasks. For example, methods such as RA-CLIP [15],
RECO [6] and RA-CM3 [17] align visual and text features by retrieving similar
samples based on image or text similarity. Nevertheless, this strategy remains
underexplored in lung nodule classification. To address this gap, we propose a
retrieval-augmented approach (Fig. 1) that integrates clinical data with CT im-
ages while concurrently retrieving similar cases to inform predictions. In contrast
to image-driven retrieval methods, our approach mirrors physician reasoning by
harnessing the semantic richness of clinical data to identify relevant samples.
The core innovation of our framework lies in the comprehensive utilization of
clinical data, enhancing image embeddings and guiding the retrieval process to
provide evidence-based support for predictions. The contributions of this work
are as:



Clinical Data-Driven Retrieval-Augmented Model 3

1. We introduce a retrieval-augmented framework designed for lung nodule ma-
lignancy prediction. This framework mimics the diagnostic reasoning of ra-
diologists by retrieving similar samples, enhancing predictive capabilities.

2. We propose a novel approach for retrieving similar samples using clinical
data as a query. Our method comprehensively utilizes clinical data in two
complementary ways: integrating it with visual features to enrich the image
representation, and employing it as a query to identify the most semantically
relevant samples.

3. Experimental results on the public LIDC-IDRI [3]| dataset demonstrate sig-
nificant improvements over previous methods. Notably, our approach excels
in predicting the challenging intermediate “unsure” category, addressing a
common weakness in earlier models.

2 Methodology

The proposed framework is depicted in Fig. 2. Inspired by CLIP-Lung [8], we
adopt a VLM framework to align visual and clinical embeddings of lung nod-
ule CT images with the textual representations of predefined categories. Unlike
CLIP-Lung, which directly aligns clinical data, images, and categories, our ap-
proach employs a retrieval-augmented framework to enhance robustness and
supplement physician-like knowledge extraction.

Our framework improves visual representations via two strategies: (1) clini-
cal data is integrated into the multimodal encoder through a lightweight MLP,
thereby enriching the visual features with semantic insights; and (2) clinical data
is used as a query to retrieve relevant samples, offering rich contextual references
that refine predictions. This dual use of clinical data mirrors physicians’ practice
of combining current case details with historical examples for accurate diagnosis.

2.1 The Proposed Framework: An Overview

In our framework, each lung nodule CT image I is paired with corresponding
clinical data D. Both images and corresponding clinical data are provided as
input into the VLM framework. The VLM framework incorporates a multimodal
encoder to process imaging and clinical data, a retrieval-augmented module, and
a text encoder.

Multimodal Encoder. The detailed structure of the multimodal encoder is
presented in Fig. 2(a). Following [8], we employ a ResNet-18 [5] to extract visual
features from the CT image I, resulting in an embedding h, € R% . Meanwhile,
values of attributes from clinical data D form a vector hy € R% . Here, v in
h, stands for “vision” and d in hg stands for “data”. The visual and clinical
embeddings are concatenated to form a unified representation:

h?¢ = MLP ([h,,hg]) h?e R, (1)
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Fig.2: The framework of the proposed method, showing an overview in the
upper part and key components in the lower part.

where [h,,hy] denotes the concatenation operation. The MLP layer transforms
the combined embedding hff, capturing both visual and clinical information while
aligning its dimensionality (R?%) with the predefined category text embeddings
for similarity computation. This module is referred to as the multimodal encoder.

Retrieval-Augmented Module. This module comprises a frozen multimodal
encoder, a frozen text encoder, and a trainable cross-attention layer, as shown
in Fig. 2(c). Given an input sample, the retrieved top-K similar images {I;} 1,
along with their corresponding clinical data {D;}X | and category labels {y; }X |,
are fed into the module. The frozen pretrained multimodal encoder extracts
visual-clinical embeddings {e?}X ;| from these samples, while the frozen pre-
trained text encoder obtains text embeddings {e;} | (where ¢ stands for “text”)
for the category labels. The retrieved visual-clinical features interact with the
visual-clinical embedding of the input sample (denoted as hg) via key, query,
and value projections, effectively integrating the retrieved information. The fi-
nal output is a refined representation hff’ . Further details are provided in §2.2.

Text Encoder. The text embeddings {hi}< , corresponding to the predefined
categories {c;}$,, where C is the number of categories, are derived from a
pretrained frozen text encoder (BioLinkBERT-large [18]). The final prediction
is then made by calculating the cosine similarity between these text embeddings
and the refined visual-clinical embedding hg' .

2.2 Clinical Data-Driven Retrieval-Augmentation Training Scheme

The model training comprises two stages. In the first stage, we train a multi-
modal encoder that integrates the input image I and clinical data D, resulting in
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an enriched visual-clinical representation h®. This representation is then directly
aligned with the text embeddings {hi}< , of the categories {¢;}< ,, which are
obtained from a frozen pretrained text encoder. The alignment is performed by
computing the cosine similarities between the visual-clinical representation and
the text embeddings. The prediction ¢ is calculated as follows:

exp <sim(}j,hg))
p(§ =) = TR (2)
Zgzl exp (Slm(h_: ,hg))
. i.1,d
where sim(hi, h?) = —2ile_ denotes the cosine similarity, and 7 adjusts the

ht||||hd
sharpness of the similHarti”t”y U(gistribution. The multimodal encoder is optimized
using cross-entropy loss between predictions and ground truth. Once pretrained,
it serves as a frozen backbone in the retrieval-augmented module for encoding
retrieved samples and providing contextual references for the final prediction.

In the second stage, we first retrieve similar cases based on clinical data
similarity, instead of the conventionally used image embedding similarity. Specif-
ically, as presented in Fig. 2(b), we take the clinical data D as a query to retrieve
the top-K most similar samples. The motivation lies in the fact that CT images
can be visually similar yet differ significantly in their pathological attributes. In
contrast, clinical data provides consistent and abstract information, making it
more reliable for identifying relevant cases. This retrieval process is performed
offline and accelerated using FAISS [7].

Next, inspired by RA-CLIP [15], we train a new multimodal encoder from
scratch, while the pretrained encoders in the first stage are incorporated within a
retrieval-augmented module. The retrieved samples {I;, D;, y; } X | are processed
by the frozen pretrained encoders, whereas the primary inputs, image I and
its associated clinical data D, are fed into the new multimodal encoder. The
retrieval-augmented module then refines the main input representation by in-
tegrating knowledge from the retrieved samples, yielding an enhanced feature
hﬁ’ that integrates both original and contextual information. As illustrated in
Fig. 2(c), the visual-clinical embeddings {e?}X, and text embeddings {e;}X,
from the retrieved samples are processed via a trainable cross-attention layer.
The visual-clinical embedding of main inputs I and D obtained from the new
multimodal encoder being trained, denoted as hff, serves as the query in both
cross-attention steps: first, h? attends to {e?}/< , with {e;}!<, providing con-
textual information:

h?®) — CrossAttention (h’i, {eh K {et}f;) . (3)

Second, h? attends to {e;}/<,, with {e?}/<, contributing complementary visual
context:
h?® = CrossAttention (hfl)7 {e } B {ed szl) . (4)

Finally, the enriched embeddings hg(l) and hg(Z) are combined with h? via
element-wise addition to produce the refined representation:

b =hg + hi™ 4+ ni®. (5)
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The refined embedding hff' is then used to compute similarities with categories,
following the procedure from Eq. (2), to generate the final prediction.

3 Experimental Settings

Dataset and Evaluation. All experiments are conducted on the publicly avail-
able LIDC-IDRI dataset [3], which contains low-dose CT images from 1,010 pa-
tients and serves as a benchmark for lung nodule classification tasks. All nodules
with annotated malignancy scores ranging from 1 to 5 were extracted. Following
previous works [8, 14], we categorized nodules based on their average malignancy
scores as follows: nodules with scores below 2.5 are classified as benign; nodules
with scores between 2.5 and 3.5 are considered unsure; nodules with scores above
3.5 are classified as malignant. Each nodule is accompanied by clinical data pro-
vided by radiologists, which includes eight distinct attributes, with each attribute
having a corresponding value, that capture the key semantic characteristics of
the nodules (e.g., sphericity, margin, lobulation, etc.). The nodules and their
corresponding annotations, including clinical attributes, were extracted using
the pylidc toolkit®. Following the preprocessing approach in [8], we cropped
all nodules into a square-shaped volume, with a size corresponding to twice the
equivalent diameter centered on the annotated location. The cropped nodules
were then resized to a uniform volume of 322 voxels to ensure consistency across
samples.

To ensure robustness and reliability, we conduct five-fold cross-validation
experiments. The evaluation metrics include accuracy (%), which reflects over-
all classification performance, as well as recall and F1-score for each individual
category (benign, unsure, and malignant) to provide a more comprehensive as-
sessment of model performance across different nodule types.

Implementation Details. The model is trained with a batch size of 512, a
learning rate of 0.01, and the SGD optimizer with a weight decay of 0.00005.
Both training stages are conducted for 1,000 iterations each. Experiments were
conducted efficiently on an NVIDIA RTX A6000 GPU, with approximately 4GB
of memory usage and a total runtime of about 30 minutes for retrieval, train-
ing, and inference. Additionally, based on internal observations during model
development, to balance retrieval quantity and quality, the number of retrieval
samples K is set to 5 across all experiments.

4 Experimental Results and Analysis

Comparison with Other Methods. The comparative results with SOTA
methods are presented in Table 1. Compared to ordinal classification methods
(e.g., Poisson, NSB, UDM, and CORF) and VLM-based methods (e.g., CLIP,

3 https://pylide.github.io/
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Table 1: Classification results on the LIDC-IDRI dataset.

Benign Unsure Malignant
Recall F1 Recall F1 Recall F1
Linear Classifier 47.7+1.5 49.1 48.7 52.9 48.2 37.7 44.5

Method Accuracy

Poisson [4] 52.7£0.7 60.5 56.8 41.0 44.1 58.4 58.7
NSB [11] 53.4+0.7 80.7 63.0 16.0 24.2 67.3 63.8
UDM ([14] 54.6+£0.4 76.7 64.3 32.5 39.5 49.5 53.5
CORF [20] 56.8£0.4 71.3 63.3 385 44.3 61.3 62.3
CLIP [13] 56.6+£0.3 59.5 59.2 53.9 52.2 552 60.0

CoCoOp [19] 56.840.6 59.0 59.2 55.1 52.8 55.2 60.0
CLIP-Lung [8] 60.9£0.4 67.5 644 53.4 54.1 60.9 66.3
Ours 63.8+1.6 66.4 68.5 60.9 58.8 64.1 64.2

Table 2: Ablation study on the contributions of clinical data and retrieval query
to classification accuracy.

Encoder Input Retrieval Query

Accuracy
Image Clinical Data Image Embedding Clinical Data

v 52.6

v v 57.6 (+5.0)
v v 52.1 (-0.5)

v v v 55.5 (+2.9)
v v 62.4 (19.8)
v v v 63.8 (+11.2)

CoCoOp, and CLIP-Lung), our method achieves the highest accuracy. In the
classification of all three categories, our approach performs remarkably well, un-
derscoring the effectiveness of our retrieval-augmented framework in improving
diagnostic robustness. Notably, it demonstrates a significant improvement in the
“unsure” category, illustrating the advantage of leveraging retrieved samples to
disambiguate ambiguous cases.

Ablation Study. Table 2 shows that adding clinical data to the main input
improves accuracy from 52.6% to 57.6%, highlighting its semantic value. Using
pretrained image embeddings as retrieval queries degrades performance due to
irrelevant or inconsistent information misaligned with the pathology. In contrast,
our clinical data-guided retrieval significantly improves accuracy, particularly for
image-only inputs (by 9.8%). The best result (63.8%) is achieved when clinical
data serves as both auxiliary input and retrieval query, highlighting its comple-
mentary role.

To better understand the observed differences, we compare top-1 retrieval ac-
curacy using two types of queries. Image embeddings yield about 43% accuracy,
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Fig.3: The t-SNE results. (a) The base VLM; (b) VLM with clinical data-
enriched multimodal encoder; (¢) VLM with clinical data-guided retrieval aug-
mentation; (d) Our final proposed method.
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Fig.4: Qualitative comparison of an unsure case under three settings: (a) base
model without retrieval, (b) image-based retrieval-augmented model, and (c)
clinical data-guided retrieval-augmented model.

while clinical data achieve around 56%, highlighting a key limitation of image-
based retrieval: its focus on surface-level features often misses subtle diagnostic
cues. In contrast, clinical data provide high-level, diagnosis-relevant information,
enabling the retrieval of cases more aligned with the underlying characteristics
of lung nodules. Notably, directly using the label of the top retrieved sample
yields 56% accuracy, which is both less rigorous and less effective than our pro-
posed framework that integrates retrieval into a unified clinical-visual pipeline,
achieving approximately 64%.

Feature Visualization and Case Study. Fig. 3 compares t-SNE[12] results
across methods. While panels (b) and (c) focus on clinical data enrichment and
retrieval, respectively, panel (d) integrates both, yielding distinct spatial dis-
tributions. In panel (d), malignant nodules (pink) cluster above the diagonal
running from the top left to the bottom right, benign nodules (blue) lie be-
low, and unsure nodules (yellow) fall in between. This separation highlights the
framework’s ability to capture intrinsic relationships for accurate, interpretable
classification.
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Fig. 4 presents a case study of an unsure sample. Using clinical data as the
retrieval query enables the model to access diagnostically relevant cases, leading
to improved classification performance compared to the base model and image-
based retrieval, particularly for this challenging ambiguous category.

5 Conclusion

We propose a retrieval-augmented framework for lung nodule malignancy pre-
diction that integrates clinical data into the multimodal encoder and employs
it as a retrieval query to identify more relevant samples. Experiments on the
LIDC-IDRI dataset show significant improvements, especially in the challeng-
ing “unsure” category, validating the effectiveness of our approach. Future work
will focus on validating the effectiveness and generalizability of the proposed
framework on broader datasets.
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