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Abstract. Aβ Positron Emission Tomography (PET) is often used to
manage Alzheimer’s disease (AD). To better understand Aβ progression,
we introduce and evaluate a mathematical model that couples Aβ at
parcellated gray matter regions. We term this model LNODE for “latent
network ordinary differential equations”. At each region, we track normal
Aβ, abnormal Aβ, and m latent states that intend to capture unobservable
mechanisms coupled to Aβ progression. LNODE is parameterized by
subject-specific parameters and cohort parameters. We jointly invert for
these parameters by fitting the model to Aβ-PET data from 585 subjects
from the ADNI dataset. Although underparameterized, our model achieves
population R2 ≥ 98% compared to R2 ≤ 60% when fitting without latent
states. Furthermore, these preliminary results suggest the existence of
different subtypes of Aβ progression.

Keywords: Aβ pathology · PET imaging · Alzheimer’s disease ·
network model · biophysical modeling.

1 Introduction

The deposition of abnormal (misfolded) amyloid beta (Aβ) is widely believed to
be linked to Alzheimer’s disease [12,18]. Longitudinal Aβ-PET imaging is one
of the best ways to study abnormal Aβ [19]. Here we introduce LNODE as a
framework to construct cohort-shared mathematical models of Aβ progression,
and eventually extend it to misfolded tau. LNODE is constructed by calibrating
it on PET scans from the ADNI dataset [13]. The model’s subject-specific
parameters aim to capture individual variations in disease progression, while
the cohort-shared parameters reflect unobserved dynamics of AD disease. The
general methodology is summarized in Figure 1.

Contributions: ❶ We introduce a novel ODE model for the Aβ evolution. ❷ We
present a cohort inversion algorithm to simultaneously estimate subject-specific
and cohort-shared parameters. ❸ We demonstrate the effectiveness of the model
using synthetic data. ❹ We evaluate LNODE on n =585 subjects from the ADNI
dataset and study its sensitivity to m, the number of latent states. As we discuss
in Section 3, LNODE significantly improves the state of the art while using ∼2.4
extra parameters per subject compared to a model without latent states. The



2 Z. Wen et al.

model without latent states is among the most widely used for describing Aβ
spreading [8]. LNODE accurately reconstructs the observations even for left-out
subjects whose data was not used to calibrate the cohort parameters.

Related Work: Several approaches have been proposed to predict the progression
of AD using deep learning and machine learning techniques. For example, [27]
introduced a deep convolutional network model to predict the disease state of
AD from 3D-PET images, while [9] developed a multimodal deep learning model
that uses both MRI and PET images for AD classification. In addition, [3] used
Aβ-PET images for Aβ positivity prediction. These methods generally involve
a large number of parameters and do not offer a mechanism-based perspective.
Simpler and more interpretable models often target the aggregate Aβ-PET signal.
For example, [5] used logistic functions to forecast the progression of scalar
biomarkers—including global Aβ-PET and Tau-PET—from cohort data; and [10]
utilized ROI-based multimodal data (including Aβ-PET) to predict the transition
from mild cognitive impairment (MCI) to AD. More recently, [24] introduced a
conceptual framework for aligning personalized disease (biomarker) trajectories
with a global progression timeline, highlighting the need for a model that can fit
cohort datasets while preserving interpretability.

Complementary to the methods above, ODE/mechanism-based models have
been used to fit observational Aβ-PET or Tau-PET data using O(1) subject-
specific parameters. Among these, the Fisher-Kolmogorov model is one of the most
widely used [8,20]. Recent alternatives have been proposed to improve performance
fitting PET data [16, 22]; furthermore, [25] combines physics-informed neural
networks and symbolic regression to discover an appropriate partial differential
equation for modeling Tau-PET. These works analyze each patient independently
and do not leverage cohort-shared disease dynamics. Our approach builds on
these methods by integrating both subject-specific and cohort-shared parameters
to model the cohort dynamics of disease progression.

2 Methodology

Let N denote the number of gray matter regions (ROIs). We use ba(t) ∈ RN to
denote the abnormal Aβ and bn(t) the normal Aβ. Here t is a disease age that we
discuss further below. Following standard modeling strategies for Aβ spread, we
represent ROI interactions using a graph Laplacian [1,20,23]. Using tractography
data from an atlas [2], we define a reference sparse ROI connectivity matrix W and
use it to define the (negative) graph Laplacian by L := W − diag(

∑
s,s ̸=r [W]rs);

L is the same for all subjects.
We obtain the observed data d := bobs

a using the preprocessing steps summarized
in Figure 1(A). We use FSL [15], to register the brain MUSE atlas [2] and
each subject’s Aβ-PET images to the subject’s first T1 MRI. The MUSE atlas
segments the brain into N = 114 gray matter ROIs. After that the scan values
are normalized by the median value of the cerebellum (reference ROI). Finally,
for each ROI ℓ at time t, we define d[ℓ](t) as the maximum mean discrepancy
(MMD) distributional distance [6] between ROI ℓ and the cerebellum.
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Fig. 1: Method summary: (A) First, we register the parcellated MUSE atlas and the
subject’s Aβ-PET to the subject’s MRI to define ROIs. For each ROI, we compute the
Aβ Maximum Mean Discrepancy (MMD) between the ROI and the cerebellum resulting
in a regional representation of degree of abnormal Aβ. These values collect in a d ∈ RN

comprise the per-subject observations that drive the inverse problem for the LNODE
parameters. (B) A well known issue is cohort age normalization. Following [5], we
normalize chronological time to a “disease age”, which we use as the time variable in
LNODE. The plots show the fit (line) and all the patient scans. In this way, we can
align individual subject data onto a common timeline, thereby enabling effective cohort
inversion. (C) The LNODE formulation and inversion parameters: subject-specific
parameters (highlighted in orange) and cohort-shared parameters (highlighted in purple);
i indicates subject; k indicates latent state. Disease age is a normalized common time
scale that is necessary for our cohort analysis. In the plot, we depict average trajectories
and their half variance (for visualization purpose) for three distinct subtypes of Aβ
progression found with k-means clustering of wik. The sagittal images show trajectories
for the subtypes. White indicates low Aβ abnormality; red indicates high-degree of Aβ
abnormality.

Following [5], we define the unnormalized disease age as t′ = at + b, where
t is the chronological age. We fit a logistic function between t′ and the global
Aβ MMD score across all subjects in ADNI, as shown in Figure 1(B). The
disease age is then normalized to the range [0, 1] using t = t′−t′

min+η

t′max−t′
min+η , where η

maximizes the classification accuracy in distinguishing cognitively normal (CN)
from Alzheimer’s disease (AD) subjects using t as the sole feature.

Figure 1(C) summarizes our ODE model. Let N denote the number of
ROIs and n the number of subjects. We denote the abnormal and normal Aβ
concentrations for subject i as ba,i ∈ RN

+ and bn,i ∈ RN
+ , respectively, for

i = 1, . . . , n. To explore the subtypes of Aβ trajectories, we introduce m latent
states hi,k ∈ RN for k = 1, . . . , m, where m ≪ n.
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LNODE: With these definitions, our model for subject i reads as follows:

Abnormal Aβ: ḃa,i = κiLba,i + ρiba,i ⊙ bn,i − γiba,i +
m∑
k

wi,khi,k, (1a)

Normal Aβ: ḃn,i = −ρiba,i ⊙ bn,i, (1b)
Latent states: ḣi,k = σ(Lhi,k + ϕ1,kLba,i + ϕ2,kLbn,i + ϕ3,k) ∀k (1c)

Initial conditions: ba,i(0) = pi, bn,i(0) = 1 − pi, hi,k(0) = 0, ∀k, (1d)

where ḃ indicates time derivative, wi,k ∈ R, and ⊙ represents the element-wise
product. In the latent-state dynamics ROI coupling is done through L for hi,k,
ba,i, bn,i—the last two acting as source terms; σ : RN → RN is an element-wise
function. We have tested σ(h) = h and σ(h) = relu(h). In Equation (1), the
abnormal Aβ ba,i is coupled to the latent states through the wi,khi,k, where
wi,k “selects” latent states. The diffusion term Lba,i is scaled by the diffusivity
constant κi ∈ R+. Abnormal Aβ also causes the transition of normal Aβ bn,i into
abnormal via the term ρiba,i ⊙ bn,i, where ρi ∈ R+. We incorporate clearance
of abnormal Aβ ba,i using −γiba,i, with γi ∈ R+. The initial condition (IC) pi

represents a sparse initial for abnormal Aβ under the assumption that misfolding
originates at a small number of regions and then spreads out to the rest of the
gray matter [16, 22]. This ODE model is defined for t ∈ (0, T ], where T indicates
the time horizon, and t is the disease age. Finally, the inversion parameters are
split to subject-specific θs := {κi, ρi, γi, pi, wi,k ∀i, k}, i = 1, . . . , n; and cohort
θc := ϕ1,k ∈ R, ϕ2,k ∈ R and ϕ3,k ∈ RN , k = 1 . . . m, shared by all subjects. We
define θ := {θs, θc}.

Inversion: We define dij as that data extracted from the jth scan of subject i,
acquired at time tij . Also, we use si to denote the number of scans for subject i.
To reconstruct θ, we use the following objective function:

J =
n∑
i

1
2si

si∑
j

∥ba,i(tij) − dij∥2
2 + λ1

n∑
i

N∑
ℓ

log(1 − pi[ℓ]) + λ2

n∑
i

∥wi∥1 . (2)

The constraint ∥wi∥1 reflects a modeling assumption that different disease
subtypes have different latent state dynamics. As we will see in Section 3, we
will cluster w to identify the subtype populations.

With these definitions, the overall inverse problem reads as follows:

min
θs>0,θc

J (θ) subject to:

Equation (1) holds and ∥pi∥0 = smax ∀i.
(3)

Note that we set ℓ0 norm on IC to enforce a sparse initial condition for Aβ. We
use gradient method to solve Equation (3). To compute the gradient with respect
θs and θc we use a Lagrangian/adjoint formulation, in which we first solve the
backward-in-time adjoint ODEs and then we accumulate the gradients [4, 7]. Let
αa,i, αn,i and αh,ik be the adjoint variables for ba,i, bn,i, and hi,k. Also define
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oik = Lhi,k + ϕ1,kLba,i + ϕ2,kLbn,i + ϕ3,k. Then, the adjoint equations for the
case σ(·) = relu(·) read:

α̇a,i = −κiLαa,i + ρibn,i ⊙ (αn,i − αa,i) + γiαa,i

+ ξa,i −
m∑
k

ϕ1,kL diag(σ′(oik))αh,ik, (4a)

α̇n,i = ρiba,i ⊙ (αn,i − αa,i) −
m∑
k

ϕ2,kL diag(σ′(oik))αh,ik, (4b)

α̇h,ik = −L diag(σ′(oik))αh,ik − wi,kαa,i, (4c)

αa,i(T ) =
{

dij − ba(tij) if tij = T

0 otherwise
, (4d)

where ξa,i = 1
si

∑si

j (ba(tij) − dij)δ(t − tij)(1 − δ(tij − T )); δ(0) = 1, δ(x) =
0, ∀x ̸= 0. Once we have solve for the adjoints we can compute the gradient
as follows. Let L be the Lagrangian of Equation (3). ∂θsL is computed as
follows: ∂L

∂κi
= −

∫
α⊺

a,iLba,idt, ∂L
∂ρi

=
∫

(αn,i − αa,i)⊺(ba,i ⊙ bn,i)dt, ∂L
∂γi

=∫
α⊺

a,iba,idt, ∂L
∂pi

= αn,i − αa,i + λ1
pi−1 , and ∂L

∂wi,k
= −

∫
α⊺

a,ihi,kdt + λ2sign(wi,k).
The gradient for θc involves a reduction across all subjects in the cohort: ∂L

∂ϕ1,k
=

−
∑n

i

∫
α⊺

h,ikdiag(σ′(oik))Lbadt, ∂L
∂ϕ2,k

= −
∑n

i

∫
α⊺

h,ikdiag(σ′(oik))Lbndt, and
∂L

∂ϕ3,k

= −
∑n

i

∫
diag(σ′(oik))αh,ikdt.

In summary to compute the gradient, we first solve Equation (1), then solve
Equation (4) backwards in time, i.e., in t ∈ [T, 0]; then given forward and adjoint
state trajectories we compute ∂θL. Parenthetically, the reason we don’t use
auto-grad is that we have a sparsity constraint ∥pi∥0 = smax, which as mentioned
is needed to constrain the initial conditions of Aβ.

Numerical Discretization and Inversion Solver: Time discretization of the
forward and adjoint ODEs is done using the L-SODA solver [14]. The optimizer is
a limited-memory quasi-Newton L-BFGS solver [26]. The regularization parameter
λ1 is chosen to ensure that pi < 1, and λ2 is selected to promote sparsity in wi.
For the clinical data experiment, we set smax = 10. The ℓ0 norm constraint on
IC is addressed using the methods described in [17,23]. We evaluate the model
for different values of m = 0, 1, 2, 3, 4.

3 Results

In this section, we present results on the performance of LNODE on synthetic
and clinical datasets. The purpose of these experiments is to provide answers to
the following questions:

(Q1) Can the model accurately reconstruct synthetic observation data?
(Q2) How well does our model fit the ADNI data compared to existing methods?
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(Q3) How does the number of latent states affect the performance of LNODE
on the ADNI data?
(Q4) How well does LNODE perform on unseen ADNI data?
(Q5) Can we use LNODE-related information to identify population subtypes?

Evaluation metrics: We use two main metrics to evaluate the numerical
experiments: relative ℓ2 and R2. We define the ℓ2 relative error for patient i and
scan j as eij = ∥ba,i(tij)−dij∥2

∥dij∥2
, with lower values indicating better performance.

We use the R2 ∈ [−∞, 1] score to quantify the proportion of variance in the
observed data that the model explains. Specifically, we compute two R2 variants:
a per scan-level score R2

scan; and a cohort-level score R2
cohort.

Specifically,

R2
scan,ij(dij , ba,i(tij)) = 1 −

∑N
ℓ=1 (dij [ℓ] − ba,i[ℓ](tij))2∑N

ℓ=1
(
dij [ℓ] − d̄ij

)2 ,

where ℓ represents the ℓth ROI and d̄ij = 1
N

∑N
ℓ=1 dij [ℓ]. For R2

cohort, we denote
davg = 1

n

∑n
i=1

1
si

∑si

j=1 dij , and ba,avg = 1
n

∑n
i=1

1
si

∑si

j=1 ba,i(tij). Then,

R2
cohort(davg, ba,avg) = 1 −

∑N
ℓ=1 (davg[ℓ] − ba,avg[ℓ])2∑N

ℓ=1
(
davg[ℓ] − d̄avg

)2 ,

where d̄avg = 1
N

∑N
ℓ=1 davg[ℓ].

(Q1) Experiment with Synthetic data: We first verify the correctness of
our inversion algorithm, its ability of our model to generate distinct subtypes
and to reconstruct trajectories, by testing it on synthetic data. To this end, we
generate m = 3 latent states of n =60 “subjects”. For each subject, we choose
a single latent state by setting wi to be one of [1, 0, 0], [0, 1, 0], or [0, 0, 1]. The
parameters θs and θc are randomly set.

Four scans per synthetic subject are used as observation data. We run the
forward solver for Equation (1) to generate di at times t = [0.8, 0.85, 0.9, 1].
Then we pollute di with 10% Gaussian noise. We summarize the results in
Figure 2(A). From left to right, the subplots display the true trajectories under
“Ground Truth Trajectories”, LNODE trajectories by fitting a model without
latent states (m=0) under “No latent states”, and LNODE trajectories by fitting
a model with “Three latent states”. The mean relative error 1

n

∑n
i=1

1
si

∑si

j=1 eij

for two methods is 11% and 3% respectively. The m = 3 reconstruction has errors
due to the presence of noise in the data. Near the vertical axis of each subplot
we show the average Aβ trajectory for each model (zoom in for full resolution).
These results offer a preliminary verification of our formulation and optimization
algorithm.
(Q2) ADNI data, evaluation of accuracy: We test our algorithm on the
ADNI dataset using Aβ-PET scans from 585 subjects. Among these, 330 are
CN, 209 have mild cognitive impairment (MCI), and 46 have AD. The cohort
comprises 284 male and 301 female subjects, with a mean age of 71.41 years (SD
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Fig. 2: (A) Results for synthetically generated data. We generate observational
data using the proposed forward model and synthesize 60 “subjects” representing
three subtypes of disease progression. Two reconstruction methods are applied to the
observational data, with the observed disease age indicated by dashed lines. We reconstruct
using two LNODE variants, one without latent states (m = 0), and one with three latent
states (m=3). In each subplot, the averaged Aβ trajectory is shown in the upper left
corner. (B) R2 Results for ADNI data. We evaluate four algorithm variants on the
585 subjects from the ADNI dataset. The group-level R2

cohort score, is displayed in the
bottom-right corner of each subplot. In each subplot, every blue dot represents an ROI,
while the red line depicts the linear regression fit to these points. Our results demonstrate
that our cohort inversion methods (m = 1, 2, 3) outperform the m = 0 case. We remark
that the m = 0 represents the current state of the art for mechanism-based ODE models
of Aβ progression. (C) Observed subtypes in ADNI data. We further cluster the
inverted wi values using the K-means algorithm to identify distinct subtypes of Aβ
progression. By examining the elbow in the inertia curve across different numbers of
clusters, we determine that the optimal number of clusters is 3. The mean Aβ trajectory
for each subtype is then presented.
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= 6.93). The data were collected between 2005 and 2024. The Mini-Mental State
Examination (MMSE) scores for the CN, MCI, and AD groups are 28.96 ± 0.99,
27.27 ± 2.33, and 22.17 ± 3.64, respectively.

We compare LNODE with an ODE model without latent states [20], originally
developed for Tau-PET data. Figure 2(B) shows results for the model without
latent states, and models with m = 1, 2, 3 latent states, respectively. R2

cohort score
is displayed in the bottom right corner of each subplot; the average per subject
R2 = 1

n

∑n
i=1

1
si

∑si

j=1 R2
scan,ij is 0.369, 0.573, 0.588, and 0.598, respectively.

(Q3) ADNI data, effect of using latent states: We report the mean relative
error 1

n

∑n
i=1

1
si

∑si

j=1 eij for the four methods as 0.489, 0.345, 0.332, and 0.320,
respectively. In particular, the hidden states significantly increase the performance
of the model: In Figure 2(B), we can see that m = 0 (No Latent States) case has
R2

cohort = 0.534, where the m = 2 (Two Latent States) case has R2
cohort = 0.993 a

difference of 0.459! And this is not overfitting as the m = 2 model uses only 2.4
additional parameters per subject than the m = 0 model (having 13 parameters).
We also tested the m = 4 case but the results remain essentially unchanged.
(Q4) ADNI data, performance on unseen subjects: By unseen subjects, we
mean subjects that were not included in the cohort training. For these subjects, we
use θc computed by a training cohort and we only invoke the inversion solver for
θs. We assess the generalizability of the learned cohort-shared parameters, using
cross-validation. 80% of the subjects are used to train for θc, while the remaining
20% serve as the validation set, where only the subject-specific parameters
are updated. We evaluate the model with different numbers of latent states
(m = 1, 2, 3); the corresponding validation R2

cohort scores are 0.987, 0.988, and
0.991, respectively. Comparing with the results in Figure 2, we only observe a
slight reduction in the R2

cohort score.
(Q5) Using LNODE to identify subtypes: Using mechanism-based methodologies
to identify subtypes was introduced in [21] for Tau-PET (did not report numbers
for Aβ). We attempt something similar with LNODE. First, we can check the
sparsity of wi for each subject i, to see how many states are active. To this
end, we compute the ratio ∥wi∥∞

∥wi∥2
(higher means sparser w): for m = 3. 94% of

the subjects exhibit a ratio greater than 0.7. Second, we cluster {wi}n
i=1 using

k-means to identify distinct subtypes of Aβ progression [11]. Figure 2(C) displays
the mean Aβ trajectory for each subtype.

4 Conclusions

LNODE introduces a novel approach by incorporating ODEs for latent states,
dividing model parameters into subject-specific and cohort-shared categories, and
using sparse coupling to facilitate subtype detection. The preliminary results are
promising, showing a 45.9% improvement in R2

cohort with an average increase
of only 2.4 parameters per subject. Our next steps include evaluating LNODE
on a larger cohort, testing different models for latent-state dynamics, gaining a
better understanding of the clinical characteristics of the identified subtypes, and
extending this to Tau-PET and other observables in ADNI subjects.
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