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Abstract. Retinal vessel segmentation is critical for diagnosing ocular
conditions, yet current deep learning methods are limited by modality-
specific challenges and significant distribution shifts across imaging de-
vices, resolutions, and anatomical regions. In this paper, we propose GrI-
nAdapt, a novel framework for source-free multi-target domain adapta-
tion that leverages multi-view images to refine segmentation labels and
enhance model generalizability for optical coherence tomography angiog-
raphy (OCTA) of the fundus of the eye. GrInAdapt follows an intuitive
three-step approach: (i) grounding images to a common anchor space via
registration, (ii) integrating predictions from multiple views to achieve
improved label consensus, and (iii) adapting the source model to diverse
target domains. Furthermore, GrInAdapt is flexible enough to incorpo-
rate auxiliary modalities—such as color fundus photography—to pro-
vide complementary cues for robust vessel segmentation. Extensive ex-
periments on a multi-device, multi-site, and multi-modal retinal dataset
demonstrate that GrInAdapt significantly outperforms existing domain
adaptation methods, achieving higher segmentation accuracy and robust-
ness across multiple domains. These results highlight the potential of
GrInAdapt to advance automated retinal vessel analysis and support
robust clinical decision-making. Our code is here.
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1 Introduction

Retinal vessel segmentation [10] and quantification [16] are critical for early
diagnosis and management of ocular diseases such as retinal vascular changes
[3] and diabetic retinopathy [25]. Accurate delineation of arteries and veins [17]
facilitates disease detection and monitoring of disease progression [6]. Various
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imaging modalities—including color fundus photography (CFP) [28] and optical
coherence tomography angiography (OCTA) [17]—offer complementary views of
the retinal vasculature [5]. However, each modality has inherent trade-offs: CFP
provides a wide field of view but often misses fine capillary details, while OCTA
delivers high-resolution, three-dimensional information at the cost of being more
sensitive to noise and artifacts.

Despite advances in deep learning for segmenting major vessels from CFP
[28,23] and extracting fine-grained capillary structures from OCTA [12], cur-
rent methods remain limited by two factors. First, single-modality approaches
are constrained by modality-specific shortcomings—for example, CFP’s limited
sensitivity to capillaries and OCTA’s vulnerability to imaging artifacts [8,13].
Second, models trained on a single source domain struggle to generalize to new
devices, fields-of-view, and clinical settings, leading to performance degradation
due to distribution shifts [9,15]. While prior work has explored domain adapta-
tion [24,4,14] and multi-modal integration [18,27,19], these approaches typically
address non-vessel structure, low-resource, or single-domain scenarios [1,20]. The
challenges of adapting vessel structures on OCTA remained less explored.

In this work, we go one step forward to explore a higher-resource but more
ambitious setting: how to widely generalize a source model to multiple target
domains through a dataset with multi-view images from each target domain. We
propose a powerful framework, GrInAdapt, with the key idea to leverage multi-
view images to obtain better labels and refine the model across multiple target
domains. Specifically, GrInAdapt follows an intuitive three-step approach: first,
all images are grounded to an anchor space through registration; second, the
labels are refined by integrating predictions from multiple views; and finally, the
model is adapted to the target domains. GrInAdapt is simple and robust—even a
basic registration applied to imperfect vessel mask predictions can be effective. It
demonstrates superiority in achieving label consensus and reducing noise caused
by imaging artifacts and low imaging quality. Moreover, GrInAdapt is flexible: it
can be easily equipped with ensemble learning and extended to a multi-modal,
multi-view setting to further reinforce label robustness via auxiliary modalities.

Extensive experiments on the AI-READI dataset [1] with multi-device, multi-
site, and multi-modal retinal images demonstrate that GrInAdapt consistently
improves the source model by, on average, a 4% Dice score increase and a 0.42
ASSD reduction. Ablation studies confirm that each component of our three-
step approach—registration, label integration, and adaptation—are robust and
contribute significantly to the observed performance improvements. Further eval-
uations reveal robust generalization across sites, unseen locations, and different
resolutions, with quantitative gains of 4% and 4.6% in Dice score. These findings
underscore GrInAdapt’s potential to enhance automated retinal analysis.

2 Preliminaries of Multi-target Domain Adaptation

Although the setting described here applies to various medical imaging modal-
ities, in this work we focus on fundus OCTA and CAVF segmentation - Capil-
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laries, Artery, Vein and Foveal avascular zone (FAZ) [17]. Let S = {(xs
i , y

s
i )}

Ns
i=1

denote the C-class segmentation labeled source domain, and let there be M unla-
beled target domains TM = {Tj}Mj=1, where each Tj is defined as Tj = {x

tj
i }

Ntj

i=1 .
In the source-free adaptation setting, only the pre-trained source model fθS is
available during adaptation. The objective of multi-target domain adaptation
(MDA) is to adapt fθS : X → Y so that it performs well across all target do-
mains {Tj}Mj=1. Adapting to multiple target domains is more challenging because
the distribution shift is larger and more diverse. For example, in OCTA imag-
ing, when taking macula-centered 6× 6 scans from certain device as the source
domain, target domain shifts can arise from several factors (Fig. 1a): imaging
quality shift (different devices, D1-D3), location shift (D4), resolution shift (D5),
and possible shift caused by the variance of clinicians’ skill across different sites.

Subject-level multi-target image pair assumption. Previous DA methods
usually focus on a single domain. A naive baseline for MDA is thus to simply
treat TM as a larger single target domain [9,15]. However, downgrading adap-
tation performance is expected as the number and diversity of target domains
increase. We thus relax data availability, allowing subject-level data pairs across
multiple domains, e.g., an eye being imaged from multiple devices, resolutions,
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and locations. Specifically, given a subject set {sk}Vk=1, for each subject sk, an
image is acquired in every target domain j, i.e., {xtj

sk}Mj=1, x
tj
sk ∈ Tj . This cross-

target paired information is essential for aligning representations across domains
and mitigating the effects of the aforementioned shifts. Optionally, paired data
from auxiliary modalities A such as color fundus photography (CFP) can also
be incorporated (D6, Fig. 1a). We assume that ∀sk ∈ V , paired data zsk ∈ A
and a source-free model fθA : Z → W that can generate a CW -class auxiliary
segmentation label w ∈ W are available. Here, the primary and auxiliary label
space Y and W share common semantic classes, i.e., Y ∩ W ⊇ {Artery, Vein},
allowing the auxiliary information to provide complementary cues for predicting
the primary segmentation label y ∈ Y. Under this setting, only training needs
subject-level pairs; the adapted model should work on a single image from any
domain.

3 GrInAdapt: Grounding, Integrating and Adapting
multiple domains

In this section, we introduce GrInAdapt, our framework designed to robustly
generalize a pre-trained source model to multiple target domains. GrInAdapt
is a three-step process: grounding, integrating, and adapting, each addressing
specific challenges arising from domain shifts in retinal vessel segmentation.

3.1 Grounding via Segmented Mask Registration

Inspired by [7,26], we proposed a grounding step that aligns target images of
the same subject to a common anchor space to mitigate spatial variability aris-
ing from heterogeneous acquisition protocols in multi-target domain adaptation.
Given a data bag Isk = {Ij}M+1

j=1 = {xtj
sk}Mj=1∪{zsk} of subject sk, we assumed for

every two images (Ianc, Imov), there exists a spatial transform h ∈ H to map the
coordinate system of Imov to that of Ianc. In our framework, we first picked an an-
chor image Ianc ∈ Isk and a registration function R(g) : g(Xanc)×g(Xmov)→ H
to estimate the spatial transformation h ∈ H that aligns the coordinates of all
other moving images Imov ∈ Isk\{Ianc} to the coordinates of the anchor image.

We only require an invertible transformation hj : ∀hj ∈ H, there exists an
accessible inverse transform h−1

j to map the registered moving image back for
the adapting process later. To ensure registration quality, we used the predicted
binary vessel probability maps g(xtj

sk) = p̂
tj ,ves
sk as they provide smooth morpho-

logical predictions (Fig. 1b). The resulting hj and h−1
j can be used to register the

actual segmentation probability map p̂
tj
sk ∈ PC

X (Fig. 1c). A similar process can
also be applied to p̂zsk ∈ PCW

X . By doing so, the grounded mask predictions from
multiple domains can be efficiently aggregated to share learned information.

3.2 Integrating via Reliable Region-wise Label Merging

Let p̃
tj
sk = h(p̂

tj
sk) and p̃

aj
sk = h(p̂

aj
sk) denote the registered segmentation probabil-

ity maps for subject sk from the target and auxiliary modalities, respectively.
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With all predictions aligned in a common anchor space, our objective is to refine
the segmentation output by fusing these diverse predictions in a manner that
is sensitive to regional variations in reliability. The key idea is very intuitive:
only reliable domains will be considered for integration. Let L ⊂ X denote a de-
fined region within the anchor-space image (e.g., the macular region, optic disc
region, or remaining regions), and let JL ⊂ {1, . . . ,M + MA} be the index set
corresponding to the selected images that have reliable contribution to region L.

For each pixel u ∈ L, the refined soft probability map is computed by aver-
aging the softmax probabilities from the selected predictions (Fig. 1d-f):

p̂soft
sk

(u) = h−1(
1

|JL|
∑
j∈JL

p̃jsk(u)), ŷhard
sk

= arg max
c∈{1,...,C}

p̂soft,c
sk

(u) (1)

where p̃jsk(x) ∈ PC is the probability vector (over C classes) predicted by the
j-th image for subject sk. Note that ensemble learning techniques such as bag-
ging [22] multiple model replicas by averaging their predictions can be easily
plugged in. The outputs p̂soft

sk
(x) and ŷhard

sk
(x) thereby serve as robust pseudo-

labels transformed back to the original space for subsequent adaptation.
Choosing L and corresponding JL is crucial. We split the retina map into 3

regions: macula, optic disc and other area (Fig. 1d,e). In the macular region, JL
includes only macula-centered OCTA predictions while excluding CFP images
because they lack the fine vessel details for accurate segmentation in the central
macula. Conversely, in the optic disc region, we relied on optic disc–centered
OCTA predictions in combination with CFP images, which have been demon-
strated to yield precise vessel delineations in this area. For all other regions, JL
comprises both CFP and OCTA predictions to benefit from both modalities.

3.3 Adapting via Teacher-Student Learning with Integrated Label

Unlike conventional domain adaptation methods that primarily focus on denois-
ing the source model’s predictions, our approach leveraged the integrated labels
to correct and improve the model (Fig. 1g). In the adaptation stage, the inte-
grated label ŷhard

sk
is used for pseudo-supervision. Specifically, initiating fθ with

the source model fθS , for each pixel u ∈ X , we defined a segmentation loss as:

Lseg =
1

|X |
∑
u∈X

ℓ(fθ(u), ŷ
hard
sk,u

), ℓ(f(u), y) = Dice(f(u), y) + λCE(f(u), y) (2)

However, as ŷhard
sk

may still contain noise, we further incorporated a confi-
dence loss exploiting high-confidence model predictions [4] thresholded by τc:

Lconf =
1

|X |
∑
x∈X

I
(
max

c
f c
θ (u) > τc

)
· ℓ
(
fθ(u), ŷ

hard
sk,u

)
, (3)

To prevent the model from reinforcing only its own potentially erroneous pre-
dictions, we employed a teacher-student framework following [11,24]. The teacher
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Table 1. Methods comparison on DSC score across various domains. A, V, F stand for
artery, vein and FAZ. ∆ indicates improvements compared to the source model. Optic
disc F is counted as 0 (fail) / 100 (success) if the output has FAZ / no FAZ prediction.

Methods C

[24] DSC (%) (mean ± standard deviation) ↑
Macula Optic Disc Macula

AllCirrus(D1) Maestro2(D2) Triton(D3) Cirrus(D4) Triton(D5)
6×6 12×12

Integrated A 74.9±6.9 69.4±4.8 71.2±7.9 63.4±22.0 65.5±6.6 70.0±12.0
label V 77.9±9.9 71.0±5.4 75.1±6.4 64.1±20.3 70.9±4.2 72.6±11.9

(Fig. 1d) F 82.3±22.6 83.5±22.0 80.3±24.8 100±0.0 75.4±25.4 81.6±23.2

Source A 70.0±6.4 64.5±5.0 65.0±9.0 70.3±7.3 58.5±5.9 66.9±7.8

model V 71.3±9.0 64.5±6.0 68.3±8.2 69.6±6.2 62.6±5.0 68.3±7.8
(fθS ) F 79.4±30.2 89.7±6.3 83.1±23.8 0±0.0 76.5±30.4 83.9±22.6

Ensemble A 71.7±6.2 66.4±4.6 67.0±9.3 63.8±23.4 60.6±7.3 67.2±12.5

prediction V 73.5±9.3 67.3±5.2 71.1±7.8 63.2±21.0 65.9±5.2 69.2±11.9
(3 models) F 87.0±24.5 90.7±6.2 86.3±20.9 0±0.0 83.8±23.1 87.6±19.1

CBMT[24] A 70.7±4.4 62.8±5.7 65.1±4.6 71.1±4.4 62.6±3.6 66.9±5.7
w/ ensembleV 71.1±6.4 63.7±5.0 68.0±4.2 69.7±5.0 66.6±3.5 68.0±5.6
prediction F 0±0.0 83.8±22.2 42.7±45.4 0±0.0 4.2±16.6 42.9±45.0

DPL[4] w/ A 73.3±4.9 66.4±5.9 67.8±8.8 75.6±5.1 61.7±6.9 70.1±7.7
integrated V 74.8±7.1 66.3±6.7 70.1±8.6 73.7±5.0 64.9±6.0 70.9±7.8

label F 88.1±8.7 86.4±9.6 84.2±18.4 100±0.0 78.7±22.4 85.7±14.3

A 73.1±5.3∆3.1 67.2±5.3∆2.7 69.0±8.0∆4.0 74.4±5.9∆4.1 63.3±6.5∆4.8 70.5±7.0∆3.6
GrInAdaptV 74.6±7.5∆3.3 67.7±5.4∆3.2 71.6±7.1∆3.3 73.5±5.5∆3.9 66.9±5.1∆4.3 71.7±6.8∆3.4

(Ours) F90.9±6.2∆11.5 90.3±7.9∆0.6 87.3±17.6∆4.2 100±0.0 83.5±23.1∆7.089.0±13.2∆5.1

model fθT provides more stable targets using weakly-augmented samples and is
updated through an exponential moving average (EMA) of the student param-
eters, which train on strongly-augmented samples: θT ← αθT +(1−α)θ, with α
as the smoothing coefficient. The overall adaptation loss is then formulated as:

Ladapt = λ(t)Lconf +
(
1− λ(t)

)
Lseg, (4)

where λ(t) denotes a cosine annealing weight schedule over E epochs. λ(t) starts
with a low value to prioritize learning from the integrated labels and gradually
increases to place greater emphasis on the teacher’s high-confidence predictions.

4 Experiments

4.1 Experimental Setup for Multi-target Domain Adaptation

Source and Multiple Target Data Domains. We aimed to segment out a
2D en face CAVF mask, while capillaries serve as an auxiliary task. To evaluate
GrInAdapt, we picked the OCTA-500 [17] dataset as our source domain and 5
modalities of OCTA scans from the AI-READI dataset [1,20] as our multi-target
domains. The OCTA-500 dataset contains 300 6mm × 6mm macula-centered
OCTA scans captured by RTVue SD-OCTA device, each paired with a CAVF
annotation. The AI-READI dataset has 1,060 patients, 2,112 eyes and in total



GrInAdapt: Source-free Multi-Target Domain Adaptation for Retinal Vessel Segmentation 7

10,496 images from 3 sites (UW, UAB, UCSD) with 3 imaging modalities of
6mm × 6mm macula-centered OCTA (imaged by Maestro2 SD-OCTA, Cirrus
SD-OCTA, Triton SS-OCTA), one 6mm × 6mm Optic disc centered Cirrus SD-
OCTA, and one 12mm × 12mm macula-centered Triton SS-OCTA modality
with no CAVF annotations. 3D OCTA flow, 3D OCT structural volume, and
2D superficial en face projection map are provided for all domains from both
datasets, and the AI-READI dataset has at least one paired 2D en face CFP
image for each scan. To facilitate the evaluation process, we selected 16 patients
from three sites with balanced lateral distribution based on imaging quality, and
annotated the CAVF masks by professionally trained ophthalmologists, resulting
in a test set of 80 images held-out throughout the training process.
Model Architecture. For the source segmentation model fθS , taking both
3D OCTA, 3D OCT and 2D projection map as input, it is a 4-block, 3D Res-
UNet equipped with IPN v2 architecture [21,17] and enhanced with a 2D branch
that processes superficial retinal features. The 3D branch is designed to capture
volumetric contextual information from OCTA and OCT data, while the 2D
branch extracts complementary features from en face projections. Nevertheless,
GrInAdapt is independent of source model structure. For the auxiliary CFP
segmentation model fθA , we leveraged the architecture of [28].
Implementation Details. We first trained fθS using the OCTA-500 dataset
with a 240:10:50 train:val:test split via the standard segmentation loss l(f(x), y)
in Eqn. (2), and utilized a trained fθA from [28]. fθS and fθA were used to predict
artery-vein masks and generate binary vessel masks for OCTA scans and CFP
images. We used a simple key point-based registration with affine transform and
AKAZE detector[2,23]. We randomly chose an anchor image and monitored if
an image passed registration by thresholding the translation, scaling, shear, and
perspective factors extracted from the transform. For each subject, we iterated
the anchor image until it successfully registered all images, or failed on all pos-
sible anchors. We only picked subjects with all images successfully registered
for label integration. For the integration, we used images with a smaller field of
view - 6mm×6mm macula-centered and optic disc centered images to split the
region. To improve label robustness, we trained 3 replicas of fθS and ensembled
them by taking the average prediction for each registered image. We only trans-
formed the artery and vein classes back to update the original prediction as we
found FAZ labels tended to shrink to the intersection across different domains.
In the adaptation stage, we set α=0.995, a learning rate of 8×10−5, and the
λ(t) schedule to be from 0.1 to 0.9 over 3 epochs. We let λ=1, τartery=τvein=0.5,
τcapillaries=0, and a region-wise FAZ thresholding scheme for τfaz. Different levels
of Gaussian noise were added to images as weak and strong augmentations.

4.2 Experimental Results

Registration results. GrInAdapt has a high success rate of registration even
with a simple, automated, and parameter-free key-point based registration algo-
rithm. Of 2,112 eyes, 1,562 from 868 patients successfully had all of their images
registered, resulting in 7,303 registered images with a 74.2% subject-level and
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Table 2. Cross-site methods comparison on the DSC score and ASSD distances.

Methods C [24] DSC (%) ↑ [24] ASSD (pixel) ↓
UW UAB UCSD UW UAB UCSD All

InegratedA 70.2±7.8 74.3±6.7 65.7±17.8 1.4±0.7 1.1±0.5 1.9±1.8 1.5±1.2
Label V 70.7±7.6 78.1±6.1 69.6±17.8 1.3±0.6 1.0±0.5 1.7±1.7 1.3±1.1

(Fig. 1d) F 73.9±33.8 84.8±14.0 88.4±5.4 1.2±0.7 1.7±2.5 1.3±0.6 1.4±1.5

Source A 67.0±7.8 70.0±7.2 63.8±7.5 2.0±1.2 1.5±0.7 2.2±1.3 1.9±1.1

Model V 66.7±7.2 72.3±6.7 66.6±8.5 1.9±1.1 1.6±1.0 2.3±1.8 1.9±1.3
(fθS ) F 74.1±33.4 90.6±4.9 89.9±7.2 1.5±2.4 0.9±0.7 1.0±0.7 1.2±1.6

GrIn A 70.3±7.3∆3.3 73.3±6.7∆3.368.1±6.2∆4.3 1.6±0.8∆.41.2±0.5∆.31.7±0.9∆.5 1.5±0.8∆.4
Adapt V 70.3±6.6∆3.6 75.1±5.9∆2.870.2±7.1∆3.6 1.4±0.7∆.51.1±0.6∆.51.6±0.9∆.7 1.4±0.8∆.5
(Ours) F 84.7±20.∆10.692.2±3.5∆1.691.5±5.0∆1.6 0.9±0.4∆.60.7±0.3∆.20.9±0.5∆.1 0.8±0.4∆.4

81.8% image-level all-success rate. Among the failed image cases, more than 60%
of them were found to have too poor imaging quality to generate a valid vessel
mask through quality check. GrInAdapt works with adequate registration, eval-
uated by DSC score between target and registered vessel masks. The median
value is 60% for cohorts with successful registration and 7% for failed cohorts.
This validated the robustness of the design and provided us a large cohort for
label integration and adaptation.
Domain adaptation performance. We compared GrInAdapt with 5 base-
lines to examine its effectiveness (Table 1 ). We first validated the good quality
of the integrated label (D1-D3, D5) especially on Artery and Vein, since it facili-
tates adaptation for most domains by serving as the target label. By utilizing it,
GrInAdapt enhanced the source model with an average of 4% improvement of
Dice score. The improvement scale is generally consistent among the artery and
vein classes across the macular region of different domains (D1-D3), suggesting
its ability to simultaneously fit multiple domains. Notably, the 12mm×12mm
field (D5) had a larger 5.3% average improvement, indicating the power of in-
tegrating vessel details from the smaller 6mm×6mm view to the wider but less
detailed 12mm×12mm view. For the challenging optic disc domain (D4), GrI-
nAdapt successfully learned to identify the area and not predict FAZ. We further
witnessed a substantial improvement in artery and vein performance, especially
when integrated label performances are largely downgraded and affected by test
set variance. We then ablated GrInAdapt with two modified baselines, CBMT
[24] with no integrated label and DPL [4] with integrated label, and found that
both the integrated label and designated teach-student scheme contributed to
the improvement. We finally demonstrated the similar overall 5-domain artery
and vein segmentation performance of GrInAdapt based on one single test im-
age for each domain compared to the integrated label which requires 5 images
from all domains in the test set, validating its consistent improvement on all do-
mains and strong generalizability. We further evaluated GrInAdapt across three
sites (Table 2 ) on both Dice and ASSD metrics and again witnessed consistent
improvements of Dice and reduced ASSD (on average 0.42) on all sites versus
the source model. Compared to the integrated label, GrInAdapt also achieved
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comparable results on Artery and Vein segmentation and improved FAZ perfor-
mance, demonstrating its robust and generalizable performance across sites.

5 Conclusion

We have presented GrInAdapt, a novel framework for multi-target domain adap-
tation in retinal vessel segmentation. Using multiview and multimodal imaging,
GrInAdapt refines pseudo-labels via three steps: grounding via registration, inte-
grating multiple predictions with region-specific fusion, and adapting the source
model using a teacher–student framework. Experiments on the large-scale AI-
READI dataset demonstrate the superior label consensus and improved seg-
mentation performance across diverse imaging domains achieved by GrInAdapt.
GrInAdapt can utilize paired multi-domain data whenever available, e.g., lon-
gitudinal analysis where image pairs are collected across time. In future work,
we plan to explore advanced registration techniques and incorporate additional
modalities, with the goal of reducing annotation burdens and developing a fully
automated, clinically deployable retinal vessel analysis system.

Disclosure of Interests. Ruikang Wang receives financial support from Carl Zeiss
Meditec, Colgate Palmolive Company, and Estee Lauder Inc; serves as consultant for
Carl Zeiss Meditec and Cyberdontics.
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