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Abstract. Accurate carotid plaque grading (CPG) is vital to assess the
risk of cardiovascular and cerebrovascular diseases. Due to the small size
and high intra-class variability of plaque, CPG is commonly evaluated
using a combination of transverse and longitudinal ultrasound views in
clinical practice. However, most existing deep learning-based multi-view
classification methods focus on feature fusion across different views, ne-
glecting the importance of representation learning and the difference in
class features. To address these issues, we propose a novel Corpus-View-
Category Refinement Framework (CVC-RF) that processes information
from Corpus-, View-, and Category-levels, enhancing model performance.
Our contribution is four-fold. First, to the best of our knowledge, we are
the foremost deep-learning-based method for CPG according to the lat-
est Carotid Plaque-RADS guidelines. Second, we propose a novel center-
memory contrastive loss, which enhances the network’s global model-
ing capability by comparing with representative cluster centers and di-
verse negative samples at Corpus-level. Third, we design a cascaded
down-sampling attention module to fuse multi-scale information and
achieve implicit feature interaction at View-level. Finally, a parameter-
free mixture-of-experts weighting strategy is introduced to leverage class
clustering knowledge to weight different experts, enabling feature decou-
pling at Category-level. Experimental results indicate that CVC-RF
effectively models global features via multi-level refinement, achieving
state-of-the-art performance in the challenging CPG task.The source is
available at https://github.com/dndins/CVC-RF
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Fig. 1. The information refinement flowchart includes Corpus-level contrastive learn-
ing for better representation learning, View-level fusion to extract shared information,
and Category-level decoupling for class-specific learning. The yellow dotted boxes in-
dicate the vessel wall or plaque.

1 Introduction

Acute ischemic stroke has become the second leading cause of death in the world,
high-risk carotid plaque rupture is one of the main contributors to embolism-
induced stroke [5]. Accurate carotid plaque grading (CPG) is crucial for early
diagnosis and prevention of stroke. Ultrasound (US) as a wide availability, real-
time imaging modality, has become the primary technique used in CPG. How-
ever, due to complex characteristics and the small size of plaques [6], CPG de-
mands extensive expertise, making it challenging for less-experienced clinicians.

To alleviate this problem, several deep learning(DL)-based methods have
been adopted for CPG [1,2,3]. For example, Zhang et al. [19] proposed a KNN
classifier to perform binary classification of carotid plaques. Singh et al. [17]
compared the performance of CNN-based models in classifying plaque levels in
US images. Zhou et al. [20] used a hybrid Convolution-Transformer approach
on US videos to assess the degree of carotid stenosis. Although effective, the
above studies focus primarily on one single view, i.e., transverse or longitudinal;
however, clinical carotid US scans are typically performed in both views for
complete diagnostic information. As plaque has large intra-class variation [0],
single-view imaging may not provide sufficient information for accurate CPG.
These limitations highlight the need to combine multi-view learning to improve
diagnostic accuracy and reliability.

Most recently, integrating multi-view information for disease diagnosis has
demonstrated significant advantages. Huang et al. [10] combined transverse and
longitudinal thyroid US images to classify benign and malignant tumors. Luo
et al. [14] aligned sagittal, coronal, and axial CT scans to enhance lung cancer
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histological classification. Huang et al. [11] introduced a reinforcement learning
method to weight four-modal US breast tumor images, exploring the dynamic
integration of information from different modalities. However, these methods fo-
cus primarily on extracting high-dimensional features from different views for
fusion or applying decision weighting to each view, neglecting the importance of
representation learning and inter-class feature differences. Moreover, they lack
specific design considerations for small structures, increasing the risk of infor-
mation loss and performance degradation.

In this study, we propose a Corpus-View-Category Refinement Framework
(CVC-RF) to address these problems. As illustrated in Fig. 1, we decompose
the multi-view classification task into three distinct information dimensions:
Corpus-level, View-level and Category-level. By hierarchical refinement in-
formation across three levels, it can effectively enhance the model’s feature learn-
ing capacity, thereby improving its overall performance. We refer to the latest
carotid plaque-RADS guidelines [16] for CPG, categorizing plaques into RADSI,
RADS2, and RADS3-4. Our contributions can be summarized as follows: 1) We
present the first DIL-based work to follow the plaque-RADS guidelines for CPG.
2) We propose a novel Center Memory Contrastive Loss (CMCL) that leverages
positive class centers from a memory bank alongside diversified negative samples
to calculate the loss, constraining intra-class aggregation and inter-class sepa-
ration, guiding the model to learn global features distribution. 3) A cascaded
down-sampling attention module (DSAM) that progressively fuses multi-scale
features, enhancing cross-view information interaction and improving the cap-
ture of small-sized plaque details. 4) A parameter-free mixture-of-experts (MoE)
weighting strategy for category feature decoupling, allowing each expert to focus
on specific features without extra parameters. Experimental results confirm that
CVC-RF surpasses current approaches, validating our framework’s efficacy.

2 Methods

Our CVC-RF is shown in Fig. 2. The longitudinal and transverse carotid images
of one patient are fed into the ResNet18 [9] backbone to extract intermediate and
representation features. In this step, considering that plaque thickness is a crucial
clinical indicator in CPG, we reshaped the spacing ( physical size of each pixel)
to image size and concatenated it in channel dim with images, This combined
input was then fed into CVC-RF to ensure alignment between pixel space and
physical space, allowing the network to perceive plaque size. The representation
features then interact with the corresponding memory bank to compute the
CMCL and acquire the weights w; for each MoE expert. Before training, all
images are encoded by a ResNet-18 (ImageNet-pretrained) and projected into
128-dim features, then stored in the memory bank for initialization. On the
other hand, the intermediate features are processed through a cascaded DSAM
to obtain the multi-scale fusion features from two different views. Finally, these
fusion features are concatenated and fed into MoE. Each expert’s output is
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summed based on the obtained w; and passed to the classifier to obtain the final
prediction.
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Fig. 2. Overview of our proposed framework

2.1 Memory Bank-based Center-memory Contrastive Loss

Previous contrastive learning methods [3,4] perform positive and negative com-
parisons using only samples within a large batch to better approximate the global
distribution. However, some bias inevitably remains unless the entire training set
is used as a single batch. In this part, we introduce the CMCL, which allows fea-
tures of the same class to cluster toward a stable center in the feature space while
pushing apart features from different classes globally, helping the model establish
a clear decision boundary and learning an unbiased global feature distribution.
Let Divain = {zF, 2T, y;}IV| be the training set of images. y; € {1,2,..., K},
K is the number of classes. zF and z7 are longitudinal and transverse images of
one patient. zZL and z! are the representation features obtained from xf and z!
through the encoder f(-), then 2%, 21" and the label y; are used to update the
memory bank M = {mJL, mJT, Yj }évzl The elements in Dy;ain and M correspond
one-to-one. Since both views undergo the same operations, for the sake of clarity,
we describe only the longitudinal view, with the other view processed identically.
For every training epoch ¢, the representation feature z{“ serves three pur-
poses. First, they update M using an exponential moving average (EMA) strat-
egy, ensuring that M adapts to the change of the model as its parameters are
optimized. The update process is as follows:
mﬁH_l — amﬁt + (1 —a)zk, (1)

3
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where o €0, 1] is the momentum coefficient that controls the weight update
speed. Second, zF interacts with all class centers in M to calculate cosine
similarity. For any class k, the corresponding class center /L,% is defined as:

L 1 L
— E g 2
K ‘Ck| m_] ’ ( )

JECK

where C, = {j | y; = k} represents as the set of all samples in M that be-
longing to class k. Third, z* is used to compute the CMCL, which updates the
parameters of encoder f(-). For the feature zX extracted from z£, it corresponds
to the label y; = k. The positive pair for zX is the class center uﬁ , while the
negative pairs are all feature samples in M that do not belong to class k. The
loss corresponding to 2 is given by:

exp(sim(zF, pf)/7) 5
exp(sim(zF uf)/7) + 3 gc, exp(sim(zF, mE)/7)

LéMCL = —log

where 7 is the temperature coefficient. The input x] from the transverse view
shares the same computation method as zX. Thus, the final Loyscr is expressed
as the sum of the losses from both views, given as: Loyvier, = Ly or + LEyor-

In the aforementioned process, the memory bank M can be mapped to a
hypersphere as shown in Fig. 1, where M represents the global feature distri-
bution. For the features z” and 27, the positive pairs correspond to the cluster
center from the same class in M, and negative pairs consist of all individual sam-
ples in M that belong to different classes. CMCL forces intra-class features to
gather around a global center rather than forming local clusters within a batch,
facilitating more stable model optimization, richer and more diverse negative
samples help the model learn a more global feature distribution, enhancing the
robustness of representation learning.

2.2 Cascaded Down-Sampling Attention Module

A common multi-view classification approach employs view-specific encoders to
extract features and map them to class probabilities via a classifier. Unlike other
classification tasks [10,11,18,12], carotid plaque regions are relatively small, re-
lying exclusively on high-dimensional features for carotid classification may miss
local information. To address this problem, we propose a cascaded DSAM to
refine and add the features step by step, achieving smoother feature fusion. As
shown in Fig. 3, four DSAMs are employed to extract and fuse features from
different feature maps. A feature map with a shape of B x C' x H x W is first
fed into the DSAM. It then undergoes a max-pooling down-sampling (MPDS)
module to reduce its spatial dimensions. Next, the down-sampled feature is di-
vided into patches along the channel dimension and passes through a multi-head
self-attention (MHSA) module. Finally, a feed-forward network (FFN) doubles
feature channels after patches are restored to their original spatial shape. Af-
ter processing through the DSAM, the first-layer feature map is refined and
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Fig. 3. An illustration of our proposed cascaded down-sampling attention module

reshaped to align with the dimensions of the second-layer feature map. These
adjusted features are subsequently summed and forwarded to a second DSAM,
where an analogous process is applied. The last DSAM output undergoes global
average pooling to obtain the feature vectors. The features obtained from all
views are then concatenated to form the final fusion feature z%".

Through these processes, the texture information from shallow layers is pro-
gressively refined by DSAMs, reducing discrepancies between different levels of
representation. This mitigates confusion caused by excessive variation in feature
scales and allows smoother feature fusion. The shared weight strategy promotes
consistent feature extraction across different views, enhancing cross-view feature
integration while improving overall feature representation through the enforce-
ment of a unified transformation.

2.3 Parameter-Free Mixture-of-Experts Weighting Strategy

The MoE model typically consists of a learnable gating network and multiple
experts. The gating network dynamically assigns weights to each expert based on
the input. We designed a new gating mechanism that applies weights to experts
without extra parameters. This enables each expert to focus on specific class
information, leading to better category-level feature decoupling.

For a pair of input samples ¥ and T, we obtain their representation features
2%, 2T and the fusion feature z. 2% is then fed into all experts. For a class-
specific expert k, its weight wy is given by:

cat cat))

wy, = exp(szm(z ) Mk (4)

Zili1 eXp(sim(zcat7 ,uf’”))

where z¢% = concat(z", 2T), p§*t = concat(ug, ut), pk, u} are obtained from

Eq. (2), represent as the class center. Our motivation is as follows: when the
feature z°* has a higher similarity to a specific class center pu§*, the input sam-
ple is more likely to belong to that class. The corresponding expert should be
assigned a higher weight to learn class-specific features. The parameter-free gate
dynamically assigns weights to different experts, allowing them to focus on spe-
cific class information. By modeling different classes separately, the experts help

reduce feature confusion between classes and improve the model’s discriminative
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ability. Finally, the output of the MokE is fed into the classifier to obtain the final
prediction. The overall loss is formulated as follows.

L=Lcg+ ALcuct (5)

where L¢og is the standard Cross-Entropy Loss. Lepser is the contrastive loss
from Eq. (3) and X is the balancing coefficient. The parameter-free weighting
strategy assigns explicit category priors via cosine similarity between input fea-
tures and the class center. Higher similarity increases the expert’s weight. Unlike
trainable gating favors certain experts, parameter-free gating provides stable
weight distribution and better guides experts to learn category-specific cues,
enhancing interpretability.

3 Experimental Results

Dataset and Implementations. We collected a private dataset comprising
1,657 pairs of carotid US images (518 RADSI1, 772 RADS2, 367 RADS3-4) from
1,228 patients, with each patient contributing no more than two cases. This
study was approved by the local IRB. All images were resized to 224x224 and
randomly split into 7:1:2 for training, validation, and testing. Pretrained weights
from ImageNet were used for initialization. The CVC-RF was implemented using
the PyTorch framework and trained for 100 epochs on an NVIDIA GeForce RTX
4090 GPU, using AdamW optimizer with a learning rate of le-4. The model infers
in 41.96 ms/case, with 18.73M parameters, 16.50 GFLOPs, demonstrating strong
deployment potential. The EMA momentum coefficient a, CMCL temperature
Coefficient 7, and loss Weight \ are set to 0.01, 0.01, and 0.2, respectively. All
hyperparameters are determined through experiments on the validation set.

Table 1. Performance comparison on carotid plaque grading.

Method |Acc (%) |M-Pre (%)|M-Rec (%)|M-F1 (%)|Accl (%)|Acc2 (%)|Acc3 (%)

Longitudinal 82.41 82.20 81.31 81.74 88.57 83.23 72.00
Transverse 85.43 85.41 84.99 85.10 89.52 85.16 80.00
Dual-ResRet18 [9]| 86.98 88.04 85.27 86.39 90.48 90.32 74.6
ETMC [7] 88.19 87.12 87.65 87.30 97.14 85.81 80.00
DeepGuide [15] | 88.74 90.44 86.36 87.98 89.52 94.84 74.67
MVC [10] 89.36 90.16 85.40 88.16 90.56 93.27 76.33
CheXFusion [13] | 90.58 91.28 87.14 89.44 91.83 94.46 82.14
Ours w/o CMCL | 87.80 87.54 87.66 87.50 94.29 85.81 82.67
Ours w/o DSAM | 92.20 91.65 92.44 91.95 97.14 90.00 90.00
Ours w/o MoE 91.45 91.15 91.23 91.10 96.19 90.65 86.67
Ours 93.25 93.80 92.50 93.05 94.29 95.16 88.00

Quantitative and Qualitative Analysis. We evaluate the performance of
CVC-RF using accuracy (Acc), mean precision (M-Pre), mean recall (M-Rec),
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mean Fl-score (M-F1), and per-class accuracy (Accl-3). All results were evalu-
ated using paired t-tests with p-values<0.05. Table. 1 presents a comparison of
CVC-RF with single-view methods, multi-view feature fusion [13,15] and weight-
ing approaches [7,10], as well as the results of ablation experiments for each mod-
ule. The experimental results demonstrate that combining both longitudinal and
transverse views for carotid plaque grading outperforms single-view approaches.
Moreover, our method achieves a significant advantage over other approaches,
with Acc3(Minority Class), M-Rec, and M-F1 improving by 4.53%, 5.36%, and
3.61% compared to the state-of-the-art method [13]|. This highlights the strong
advantage of our hierarchical feature refinement strategy over view-wise interac-
tion methods while also helping to mitigate the impact of data imbalance.

* RADSI ¢ RADS2 ¢ RADS3-4

P Cicaausing

(e) Grad-CAM

Fig. 4. t-SNE and Grad-CAM visualizations are presented. The upper section displays
t-SNE results with and without CMCL, and (e) compares Grad-CAM with(Green) and
without(Red) DSAM. The yellow box highlights the plaque.

In the ablation study, we found that the removal of the DSAM or MoE module
led to a performance drop, demonstrating their effectiveness. Moreover, ablating
CMCL resulted in a significant 5.54% drop in Acc. This suggests that strong
feature representation is essential to establish a solid foundation for subsequent
tasks and progressive refinement enhances model performance.

Fig. 4 presents the t-SNE and Grad-CAM of both views. Without CMCL
guidance, features of the same class tend to form multiple small clusters, while
class boundaries remain unclear. In contrast, CMCL encourages intra-class fea-
tures to cluster tightly within the feature space and enforces more distinct de-
cision boundaries between different classes. (e) shows the superiority of DSAM

in Grad-CAM on three image pairs, helping the model focus on plaque regions
when DSAM is included.
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4 Conclusions

We propose a novel CVC-RF for multi-view CPG, the first work for CPG based
on the plaque-RADS guidelines. By incorporating hierarchical refinement across
the Corpus-level, View-level and Category-level, our approach enhances
model performance. Additionally, a multi-scale feature fusion strategy is em-
ployed to address the challenge of small plaque regions. Experimental results
demonstrate the superior performance of our method over existing approaches,
validating the effectiveness of multi-level information refinement.
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