
Temporal Differential Fields for 4D Motion
Modeling via Image-to-Video Synthesis

Xin You1,2,3, Minghui Zhang1, Hanxiao Zhang1,
Jie Yang1(B), and Nassir Navab2(B)

1 Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
2 Computer Aided Medical Procedures, Technical University of Munich, Munich,

Germany
3 Munich Center for Machine Learning, Munich, Germany

sjtu_youxin@sjtu.edu.cn, nassir.navab@tum.de

Abstract. Temporal modeling on regular respiration-induced motions
is crucial to image-guided clinical applications. Existing methods can-
not simulate temporal motions unless high-dose imaging scans including
starting and ending frames exist simultaneously. However, in the pre-
operative data acquisition stage, the slight movement of patients may
result in dynamic backgrounds between the first and last frames in a res-
piratory period. This additional deviation can hardly be removed by
image registration, thus affecting the temporal modeling. To address
that limitation, we pioneeringly simulate the regular motion process via
the image-to-video (I2V) synthesis framework, which animates with the
first frame to forecast future frames of a given length. Besides, to pro-
mote the temporal consistency of animated videos, we devise the Tempo-
ral Differential Diffusion Model to generate temporal differential fields,
which measure the relative differential representations between adjacent
frames. The prompt attention layer is devised for fine-grained differen-
tial fields, and the field augmented layer is adopted to better interact
these fields with the I2V framework, promoting more accurate temporal
variation of synthesized videos. Extensive results on ACDC cardiac and
4D Lung datasets reveal that our approach simulates 4D videos along
the intrinsic motion trajectory, rivaling other competitive methods on
perceptual similarity and temporal consistency. Codes are available at
https://github.com/AlexYouXin/Mo-Diff
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1 Introduction

4D Temporal modeling on breathing-induced motions, is significant to image-
guided clinical applications [8, 15, 26], such as disease diagnosis and therapy
planning. Particularly, 4D cardiac Magnetic Resonance Imaging (MRI), moni-
toring the anatomical variation of 3D cardiac structures [1, 30], is frequently used
for cardiac disease analysis and surgical intervention. Besides, 4D pulmonary
Computed Tomography (CT) is adopted to model the respiratory process, which
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is beneficial to the intraoperative puncture of pulmonary nodules by assisting
clinicians to determine the optimal puncture path [18].

Existing methods utilize flow-based interpolation models [9, 17] to deduce
the regular motion process with the predefined starting and ending frames. And
some researchers aim to synthesize the whole videos by means of diffusion models
conditioning on these two prompting frames [16, 11]. Basically speaking, all these
methods could barely simulate breathing-induced motions only if two prompting
frames exist simultaneously in the test-time evaluation. However, in the preop-
erative data acquisition stage, the slight movement or unstable breathing of
patients may result in dynamic backgrounds between the first and last frames in
a respiratory period. This additional bias cannot be thoroughly removed through
image registration, thereby affecting the temporal motion modeling. Moreover,
clinical research indicates that two high-dose CT or MRI scans will cause pro-
longed radiation exposure, potentially impairing patients’ health [21, 31].

To address these limitations, we pioneeringly simulate regular respiration-
induced motions via the image-to-video (I2V) synthesis framework, which an-
imates with the first frame to forecast future frames of a given length. Owing
to the compatibility of conditional diffusion models across different inputs [34],
the image-to-video paradigm can be seamlessly plugged into diffusion models.
Herein, the diffusion model implicitly learns temporal correlations of 4D data
with regular motion discipline, under the conditional guidance of the starting
frame and frame number. Besides, to promote the temporal consistency of an-
imated videos, we propose the Temporal Differential Diffusion Model (TDDM)
to generate temporal differential fields, which measure the relative differential
representations between adjacent frames. The prompt attention layer (PAL) is
devised for fine-grained differential fields, and the field augmented layer (FAL)
is adopted to better interact these fields with the I2V framework, boosting pre-
cise temporal consistency of synthesized videos. Our two-stage pipeline is aimed
at the Motion simulation via conditional Diffusion models, termed Mo-Diff.
Extensive results on ACDC cardiac and 4D Lung datasets reveal that Mo-Diff
forecasts accurate volumes along the intrinsic motion trajectory, rivaling other
competitive methods on perceptual similarity and temporal consistency, which
are more clinically significant than pixel-centric reconstruction metrics.

Contributions: 1) We pioneeringly introduce the image-to-video (I2V) paradigm
to simulate regular breathing-induced motions, and propose the two-stage pipeline
termed Mo-Diff. 2) The temporal differential diffusion model is devised to yield
temporal differential fields as conditional guidance, amplifying the temporal con-
sistency of synthesized volumes by I2V. 3) The prompt attention layer is aimed
at fine-grained differential fields, and the field augmented layer is adopted to
effectively interact these fields with the I2V framework, promoting more accu-
rate temporal consistency. 4) Experiments demonstrate that Mo-Diff can syn-
thesize precise and realistic videos with better perceptual quality and temporal
consistency, showcasing potentials of simulating regular cardiac and pulmonary
motions.
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Fig. 1. The whole Mo-Diff pipeline. Stage 1: TDDM yields temporal differential fields
conditioning on the prompting frame and frame number. Stage 2: the conditional diffu-
sion model will synthesize 4D latent embeddings with the guidance of temporal fields.
These latent embeddings are then transformed into 4D videos with regular motions.

Related work: Breathing-induced motion modeling has been a critical research
area within medical image computing and computer-assisted intervention [27,
32]. Existing methods on this topic can be categorized into two groups. The first
group of approaches try to interpolate intermediate frames with the starting
and ending frames in a breathing period, based on the perspective of optical
flow estimation. Specifically, SVIN [9] estimates forward and backward deforma-
tion fields, which will yield precise intermediate frames by linearly combining
bidirectional information. UVI-Net [17] utilizes the flow calculation model with
the time-domain cycle-consistency constraint and linear motion hypothesis, to
realize motion modeling in an unsupervised style.

Recently, denoising diffusion probabilistic models [10, 11, 19] show promising
performance in generating realistic images or videos, by transforming random
Gaussian distributions into target data distributions. The second category of
methods maximize the potential of diffusion models to resolve video interpola-
tion tasks in a generative manner. Essentially, these approaches implicitly learn
the temporal motions from the starting frame to the ending frame [14, 2, 6]. Fur-
thermore, a recent work [16] devised a diffusion deformable model (DDM), which
can learn spatial deformation maps between the starting and ending volumes and
provide a latent code for generating intermediate frames along a geodesic path.

2 Methodology

2.1 Image-to-Video Conditional Diffusion Models

To eliminate the potential misalignment caused by patients’ movements in clin-
ical practice, we intend to avoid the data acquisition of the ending CT or MRI
frame in a respiratory cycle, and only collect the starting frame for the motion
simulation of future frames. Thus, we select the diffusion model conditioning on
the first volume frame to simulate regular temporal motions. That generative
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model can also be viewed as the image-to-video (I2V) framework. For saving
GPU memory, the image space is transformed into latent space with a well-
trained Variational Autoencoder (VAE). And our framework draws lessons from
the Latent Video Diffusion Model (LVDM) [5, 23]. It conducts the denoising pro-
cess in the latent space. Before training, the input video x0 is first encoded into
a latent embedding z0 = E(x0) with VAE encoder E(·), and z0 can be restored
into x0 via VAE decoder D(·). Then the latent code z0 is perturbed as:

zt =
√
αt z0 +

√
1− αt ϵ, ϵ ∼ N(0, 1) (1)

where αt =
∏t

i=1(1 − βt) with βt is the noise strength coefficient at time step
t, and t is uniformly sampled from the timestep index set 1, ..., T . This process
can be regarded as a Markov chain, which incrementally adds Gaussian noise to
the latent code z0. The denoising model ϵθ receives zt as input and is optimized
to learn the latent space distribution with the objective function:

Lϵ = Ezt,ϵ∼N (0,1) ||ϵ− ϵθ(zt, t, c)||2 (2)

where c represents the condition, and ϵθ is implemented as a light-weight U-Net.
Using the devised LVDM, we aim to synthesize the latent embeddings showcasing
motion dynamics of anatomical structures.

2.2 Temporal Differential Diffusion Model

The I2V model is aimed at modeling the motion discipline of the breathing
process. However, as demonstrated by [19, 24], synthesized videos are prone
to visualizing sequences with poor temporal consistency if no extra condition is
injected into diffusion models. Thus, we devise the temporal differential diffusion
model (TDDM) to generate temporal differential fields as an additional prompt.
This conditional input can boost a temporally consistent synthesis of latent
embeddings by the above-mentioned I2V framework, with smoother variation
on anatomical shape and texture details.

Temporal differential fields are defined to measure the relative variance be-
tween two adjacent frames. Specifically, the ith frame of temporal fields Fi is
calculated with the subtraction between image frame Ii and Ii−1, with i ranging
from 1 to frame number N . The detailed process is noted as follows:

Fi =

{
Ii ⊖ Ii−1, if i ≥ 2

0, otherwise
(3)

F1 is set as a zero mask to improve the convergence efficiency. After the score-
based training, TDDM can transform the Gaussian noise G1 ∼ N (0, 1) into
synthesized differential fields F̂ corresponding to the prompting image I1 and
frame number N , formulated as F̂ = TDDM(G1, t; I1, N). Here t refers to the
diffusion time step. As revealed in Fig. 1, F̂ will suppress dynamically varying
backgrounds, and highlight the foreground regions in the respiratory process.
Thus, F̂ can enormously boost the reconstruction performance of future frames
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Fig. 2. The detailed structure of prompt attention layer and field augmented layer.

by the I2V network. Besides, temporal fields representing regular motions will
significantly improve the temporal consistency of synthesized videos.

It is worth mentioning that frame number N is a significant conditional
variable, serving as a compensation for the absence of the ending frame. Due
to a fixed samping duration between frames, the specific N corresponds to the
specific breathing period, acquired by electrocardiogram signals, thus influencing
the rate of temporal motion variations. As shown in Fig. 1, N serves as an explicit
constraint on the motion velocity of respiration, promoting TDDM to generate
appropriate temporal differential fields, further improving the video synthesis
with regular motions.

2.3 Network Details of Mo-Diff

Spatial & Temporal Layer: Mo-Diff is designed for yielding four-dimensional
videos, which pose a huge challenge to the joint modeling on spatial and temporal
domains. Inspired by [22], we try to extract spatial and temporal information in
a separate manner. Given the noisy input IG with a dimension of B ×C ×N ×
L×H×W (corresponding to batch size, channel, frame number, length, height,
and width individually), we respectively implement 3D spatial convolutions and
1D temporal convolutions on IG as visualized by Fig. 1(b).
Prompt Attention Layer (PAL): To integrate the prompt information into
the first-stage TDDM, we do not simply concatenate the first frame with noisy
differential fields for training as what previous works did [28, 20, 33]. Instead,
a feature-level fusion is adopted to synthesize temporal differential fields with
fine-grained textures and shapes, which hold importance for the synthesis perfor-
mance of future frames. Thus, we propose the PAL to boost the representation of
TDDM. Specifically, given the initial frame I1, we define the convolutional map-
ping M which can transform the image space into feature space. As visualized
in Fig. 2, M is a combination of convolution, ReLU, and group normalization
operations. Then the warped feature of the prompting frame is utilized to en-
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Table 1. Baseline comparison with various models. Double prompting frame: starting
and ending frames; Single prompting frame: only the starting frame (Blue, red values
represent best evaluation metrics corresponding to two types of models respectively).

Prompting Model ACDC Cardiac 4D Lung

Frame PSNR (dB) ↑ LPIPS ↓ FVD ↓ PSNR (dB) ↑ LPIPS ↓ FVD ↓
SVIN [9] 31.43±0.421 1.563±0.206 93.6 30.49±0.304 2.650±0.245 125.6

Voxelmorph [3] 30.77±0.502 1.969±0.197 102.1 29.90±0.373 2.815±0.260 149.0
Double UVI-Net [17] 32.16±0.402 1.662±0.245 94.2 31.57±0.311 2.211±0.216 121.7

LDMVFI [7] 27.11±0.460 2.943±0.410 99.2 26.31±0.453 3.659±0.341 142.7
DDM [16] 29.79±0.504 2.689±0.352 110.3 29.67±0.420 2.905±0.330 165.5
LDDM [6] 24.53±0.481 2.634±0.308 105.7 25.19±0.273 2.914±0.287 146.3

Single Condi-Diffusion [11] 26.59±0.545 2.460±0.357 95.7 25.95±0.391 3.294±0.375 133.0
Mo-Diff 30.79±0.409 1.317±0.189 86.1 29.86±0.282 2.137±0.225 115.8

hance features corresponding to temporal differential fields via the element-wise
multiplication and addition.
Field Augmented Layer (FAL): To synthesize 4D videos with temporal con-
sistency, we propose the FAL to interact temporal differential fields with frame
features. Specifically, z1 denotes the feature of the first frame, and z2:N means
the subsequent frame features. As revealed in Fig. 2, via the warping transform
W, differential fields of future frames F̂2:N are warped into frame features z′2:N .
The detailed process can be formulated as Eq (4).

z′i = W(z1, F̂1→i), i = 2, ..., N (4)

z′i shows similar spatial-temporal patterns to z1. Then warped features are inter-
leaved with future frame features z2:N in the temporal dimension. Specifically,
two-branch features with the same frame index are arranged side by side, and the
merged result is noted as augmented features z′′ = [z1, z2, z

′
2, ..., zN , z′N ], which

is then projected as key and value vectors. And the query vector arises from z.
After the self-attention operation, augmented frame features z can be attained
to synthesize temporal-consistent latent embeddings.

3 Experiment

3.1 Experimental Settings

Dataset. To evaluate the efficacy of Mo-Diff, we conduct experiments on public
ACDC cardiac [4] and 4D-Lung datasets [13]. For ACDC with the MRI modality,
volume sequences from the diastolic to systolic phases are extracted as 4D data.
Of all the 150 4D sequences, cases with identity 1-100, 101-120, and 121-150 serve
as the training, validation, and testing sets. Besides, all MRI volumes are resam-
pled with a voxel space of 1.5×1.5×3.12mm3 and cropped to 128×128×32 [29].
And the frame number N shows a range of [6, 16]. For 4D-Lung CT images, the
end-inspiratory and end-expiratory scans are set as the initial and final images.
We collect 125 4D videos from [13], with resolutions equal to 10×128×128×128.
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They are split as 80/15/30 cases for training, validation, and inference. The in-
tensity value is scaled as [0, 1]. We choose quantitative evaluation metrics in-
cluding PSNR [12], Learned Perceptual Image Patch Similarity (LPIPS) [35],
and Fréchet Video Distance (FVD) [25]. PSNR is the traditional pixel-centric
reconstruction metric, which cannot well assess the quality of synthesized videos
in clinical practice [14]. Instead, LPIPS and FVD are more reasonable metrics
representing human visions. Specifically, LPIPS reveals perceptual variance. And
FVD evaluates the feature distribution bias between ground truths and synthe-
sized videos, measuring temporal consistency and continuity.
Implementation Details. The VAE maps the image space into the downsam-
pled latent space with a ratio of 1/4. For the proposed TDDM, the temporal
channel of inputs is set as 16, but we only calculate the score-based loss Lϵ with
the first N channels for efficient training. And the synthesized 4D latent embed-
dings by field-guided I2V are further transformed into temporal sequences via
the latent decoder of VAE. All models are trained using AdamW optimizer with
the linear warm-up strategy. The initial learning rate is set as 1e-4 with a cosine
learning rate decay scheduler, and weight decay is set as 1e-5. The batch size,
diffusion step T , and training epoch are equal to 2, 1000, and 500. Experiments
are implemented based on Pytorch and 2 NVIDIA RTX 4090 GPUs.

3.2 Experimental Results

Baseline Comparison. For performance comparisons on the simulation of 4D
temporal motions, we list out two categories of methods, classified as ”Double”
(conditioning on both starting and ending frames) and ”Single” (conditioning
on only the starting frame). Obviously, models with two prompting frames can
achieve better pixel-wise reconstruction performance, with higher PSNR values.
However, when evaluating the feature-level perceptual similarity with human
judgments, our proposed model reveals a good LPIPS metric on ACDC, with
a 0.246 ↓ lower value than supervision-based model SVIN [9] as illustrated by
Table 2. Also, Mo-Diff synthesizes 4D videos with more consistent temporal
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Table 2. Ablation study on key components. w/o PAL: replaced with a channel con-
catenation operation; w/o FAL: concatenate channels between frame features and dif-
ferential fields, then conduct 1D temporal self-attention.

Frame PAL FAL
ACDC Cardiac 4D Lung

Number PSNR (dB) ↑ LPIPS ↓ FVD ↓ PSNR (dB) ↑ LPIPS ↓ FVD ↓
✗ ✔ ✔ 28.07 2.206 109.7 27.44 2.732 142.9
✔ ✗ ✗ 28.60 1.878 111.5 27.93 2.560 131.3
✔ ✔ ✗ 29.86 1.683 94.7 28.46 2.351 119.4
✔ ✗ ✔ 29.97 1.532 100.9 29.12 2.215 128.0
✔ ✔ ✔ 30.79 1.317 86.1 29.86 2.137 115.8

SVIN

DDM

Ours

VM

Fig. 4. Temporal error maps between different models. All frame predictions are visu-
alized except starting and ending frames (Red box: intermediate frames).

distributions with ground truth videos, outperforming UVI-Net [17] with a 5.9 ↓
FVD value. That convincingly validates the efficacy of the TDDM.
Qualitative Results. As illustrated by Fig. 3, our proposed model can forecast
precise enough frames, rivaling other competitive flow-based models. Specifically,
Mo-Diff reveals a promising shape synthesis of arteries for lung data and texture
synthesis of myocardium for cardiac data. Also, Fig. 4 depicts temporal error
maps for a qualitative evaluation on temporal consistency. Our results show more
precise simulation for three intermediate frames, which are tricky to forecast due
to a farther distance to prompting frames. In contrast, SVIN and Voxelmorph
reveal better reconstruction performance for bilateral frames.

3.3 Ablation Study

We carried out the ablation study on Mo-Diff. 1) Frame number N : as shown
in Table 2, removing the frame number off Mo-Diff will largely degrade the
reconstruction and synthesis performance, with 2.42dB ↓ PSNR and 0.889 ↑
LPIPS on ACDC. Without N , the model cannot perceive the implicit period in-
formation of a respiratory process, affecting the motion modeling. 2) PAL: PAL
aims to fully leverage the first frame by extracting prompting frame features.
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A coarse channel concatenation fails to effectively inject prompting information
into TDDM, resulting in unsatisfactory temporal differential fields. 3) FAL: re-
placing FAL with a channel fusion between these fields and frame features, will
lead to modality confusion, which further affects synthesis performance with
1.40dB ↓ PSNR and 0.214 ↑ LPIPS.

4 Conclusion

We pioneeringly simulate regular respiration motions via the proposed Mo-Diff
framework, which animates with the first frame to forecast future frames with a
given length. Besides, the temporal differential diffusion model can generate tem-
poral differential fields to promote the temporal consistency of animated videos.
Mo-Diff can model relatively regular temporal motions via the prompting frame.
However, it requires more clinical guidance, including electrocardiogram signals,
to simulate highly unstable breathing, which is promising in future work.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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