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Abstract. The segmentation of non-salient objects in medical images
plays a crucial role in the early detection and diagnosis of diseases. How-
ever, due to the low contrast and unbalanced distribution of the non-
salient objects, their feature extraction still suffers from dimensional
collapse. To address the inherent feature representation challenges of
non-salient objects, we propose a pre-trained Multi-Granularity Masked
AutoEncoder (MG-MAE) framework with diversified feature learning
capabilities. In the global level, masked image reconstruction captures
holistic structural and contextual features. Subsequently, in the local
level, patches are extracted from the global visible patches, and the His-
togram of Oriented Gradient (HOG) features of these patches are then
reconstructed to enhance the texture details. Based on local perception,
the framework integrates Nuclear Norm Maximization (NNM) constraint
to foster diversity of the local representations in the feature encoding pro-
cess. In the HOG reconstruction process, the framework also adopts a Dy-
namic Weight Adjustment (DWA) strategy, assigning greater reconstruc-
tion weights to challenging image patches, thereby solving the problem of
representation bias towards salient objects. We evaluate our method on
a private dataset, CCTA139, and two public datasets, BTCV and LiTS,
respectively. Our method achieves DSC of 80.71%, 82.60%, and 71.77%,
respectively, surpassing the performance of current state-of-the-art meth-
ods. The code is available at https://github.com/zhangbbin/mgmae.
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1 Introduction

In medical image analysis, the accurate identification of non-salient objects car-
ries substantial clinical significance [1,14]. This clinical relevance manifests across
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multiple domains: coronary artery stenosis detection enables timely intervention
in coronary artery disease progression [9, 10], precise localization of small ab-
dominal organs (e.g., gallbladder and pancreas) supports surgical planning and
diagnostic accuracy [21], and early detection of sub-centimeter tumors (e.g., stage
I lung/hepatic malignancies) critically determines therapeutic outcomes [13]. Al-
though these lesions may occupy minimal volume and exhibit barely perceptible
contrast from surrounding tissues, their segmentation holds critical importance
for clinical diagnosis and therapeutic decision-making.

However, the segmentation of non-salient objects still suffers from dimen-
sional collapse stemming from two interrelated challenges. First, the non-salient
objects have inherently low contrast compared to adjacent tissues, making them
easily overlooked in image feature extraction. Second, this perceptual ambi-
guity is further complicated by severe distribution imbalances, which manifest
through two mechanisms: inter-class imbalance reflects the statistical rarity of
certain anatomical categories (e.g., accessory spleen occurring in <2% of abdom-
inal scans); intra-class imbalance arises from significant distribution differences
within individual categories, including size disparities (larger tumors 2-3 cm,
smaller tumors 0.50-1 cm), shape polymorphism, and contrast heterogeneity.
These challenges cause dimensional collapse: the latent space degenerates into
a low-rank manifold biased toward dominant features (e.g., high-contrast struc-
tures), suppressing the representation of non-salient patterns.

In this paper, we propose a pre-trained multi-granularity framework for seg-
mentation of non-salient objects in medical images, aiming to enhance the di-
versity of non-salient object features. To address the dimensional collapse issue
caused by MAE [25], we introduce a local branch for fine-grained detail percep-
tion, extending MAE to a multi-granularity space. Based on local perception, we
introduce a dual-path optimization scheme at the local level, incorporating Nu-
clear Norm Maximization (NNM) constraint and Dynamic Weight Adjustment
(DWA) strategy for enhanced feature diversity and prioritization of challeng-
ing patches. Specifically, we establish a Multi-Granularity Masked Autoencoder
(MG-MAE) framework, which hierarchically integrates global level to local level
feature learning. In the global level, the input image is globally masked, and the
masked patches are reconstructed to generate a coarse latent feature represen-
tation that captures the holistic understanding of the image [12]. In the local
level, we further extract visible global patches and reconstruct the HOG fea-
tures of the masked local patches. NNM aims to improve the effective rank [20]
of the feature matrix to promote diverse feature representations. By encourag-
ing diversity, NNM prevents the collapse of feature representations into narrow
manifolds [15,25]. DWA dynamically adjusts the HOG reconstruction weights as-
signed to different image patches based on their learning difficulty. This ensures
a more comprehensive optimization process and aids in learning the fine-grained
features of non-salient objects.

Our contributions are summarized as follows: 1) We introduce a two-level
MG-MAE framework that captures both global semantic structures and fine-
grained local details, enhancing the model’s ability to the segmentation of non-
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Fig. 1: The architecture of our proposed framework. MG-MAE combines global
pixel reconstruction and local HOG feature refinement, optimized by NNM and
DWA to prevent feature collapse and prioritize challenging patches.

salient objects. 2) We introduce a NNM constraint to enforce diverse feature
learning, preventing the collapse of non-salient object features into narrow man-
ifolds. 3) We introduce a DWA strategy to dynamically adjust the reconstruction
weights based on the learning difficulty of each patch, placing higher emphasis
on challenging non-salient objects.

2 Methodology

2.1 Preliminary: Masked Autoencoder

Masked Autoencoder (MAE) [12] is a scalable self-supervised vision learning
method, where the core idea is to randomly mask a large portion of the input
image (e.g., 75%) and reconstruct the missing pixels. The method employs an
asymmetric encoder-decoder architecture: the encoder processes only the visible
patches, while the lightweight decoder reconstructs the original image by com-
bining the latent representations and the masked tokens. The high masking ratio
reduces spatial redundancy, forcing the model to complete the task through a
holistic understanding.

While MAE is powerful in representation learning, it lacks the ability to cap-
ture low-level image statistics [12], which leads to dimensional collapse when
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learning non-salient objects [25]. In this case, subtle and low-contrast objects
tend to collapse into the background or salient objects. To enhance local percep-
tion of the non-salient objects, we further introduce a local branch specifically
for the perception of fine-grained details in Section 2.2. Crucially, we employ
a dual-path optimization. In the encoding phase, NNM is used to enhance the
rank of the feature matrix and prevent collapse in Section 2.3, while the decoding
phase incorporates DWA to prioritize challenging patches in Section 2.4.

2.2 Multi-Granularity Masked Autoencoders Framework

As shown in Fig. 1, MG-MAE is designed as a hierarchical framework, where
each layer focuses on a distinct level of granularity. The global level of MG-MAE
adopts the MAE [12] framework to reconstruct the masked patches of the input
image. The global reconstruction loss can be defined as:

LGR =
1

|Mglobal|
∑

i∈Mglobal

(X̃i −Xi)
2

(1)

where Mglobal is the set of global masked indices, X̃i and Xi represent the
reconstructed patches and the original patches.

In the local level, MG-MAE extracts visible patches from the global level and
reconstructs HOG features [22] instead of raw pixels for the masked patches.
HOG explicitly encodes gradient orientation distributions, which are critical for
resolving subtle texture variations. This design aligns with the hierarchical MG-
MAE: global pixel reconstruction preserves anatomical context, while local HOG
refinement amplifies discriminative patterns essential for challenging patches.
Similarly, the local patch p is masked at 50% to obtain pv, which is then put into
the encoder to obtain latent representation Zpv

. The projection head gϕ(·) [22]
combine Zpv

and masked tokens Zpm
to reconstruct the missing HOG features:

H̃local = gϕ(Zpv
, Zpm

) (2)

The reconstruction loss for the local HOG features can be defined as:

LLR =
1

|Mlocal|
∑

i∈Mlocal

(H̃local,i −Hlocal,i)
2

(3)

where Mlocal is the set of local masked indices, H̃local,i and Hlocal,i represent
the reconstructed HOG features and the original features.

2.3 Nuclear Norm Maximization Constraint

To mitigate the risk of dimensional collapse in feature representations [25], where
learned embeddings concentrate on into a low-rank manifold and fail to capture
diverse patterns, we propose a nuclear norm maximization constraint that ex-
plicitly enforces feature diversity at the local encoder output. It has been the-
oretically verified that the nuclear norm is a convex relaxation of the matrix
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rank, which encourages the feature to maintain a high effective rank [5, 8, 20].
Specifically, this constraint operates on the latent feature matrix Zpv

∈ Rm×n,
where m is the number of patches and n is the embedding dimension. By max-
imizing the nuclear norm ∥Zpv∥∗, Zpv tends to maintain a high effective rank,
ensuring that singular values are distributed broadly rather than collapsing to a
few dominant dimensions. Then, the LNNM can be defined as:

LNNM = −||Zpv
||∗ (4)

2.4 Dynamic Weight Adjustment Strategy

To solve the problem of representation bias towards salient objects, we propose a
theoretically grounded weight adjustment strategy that dynamically prioritizes
patches based on their learning difficulty. The core idea is to quantify the gradient
stability of each patch i. Then, we define its stability metric si as:

si = exp(−λ ·
∥∥▽Lt

i −▽Lt−1
i

∥∥
2

▽Lt−1
i + ε

) (5)

where λ controls the sensitivity to gradient variations, and ε ensures numerical
stability. A lower gradient variation (higher si) indicates persistent optimization
difficulty, such as in low-contrast structures. The reconstruction weights wi are
then assigned through a entropy maximization weight allocation principle [16]:

wi =
si∑
j sj

· log(1 + 1

si
) (6)

This formula combines the information entropy principle with gradient stability,
emphasizing difficult areas while preventing weight polarization through entropy
constraints. Consequently, the dynamic weighted loss can be defined as:

LWLR =
∑
i

wi · LLRi (7)

where LLRi
represents the loss of each patch. Finally, the overall loss function

in the pre-training phase is defined as:

Lpretrain = LGR + αLWLR + βLNNM (8)

where α and β are used to balance the relative contributions of these loss terms.

3 Experiments

3.1 Experimental Setup

Datasets. Our method is validated on one private dataset and two public
datasets. The CCTA139 dataset is a private dataset of coronary arteries con-
taining 139 samples. BTCV is a public dataset for multi-organ segmentation.
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Ground Truth Ours R-MAE GL-MAE MAE CAS-Net UNETR

Fig. 2: Qualitative comparison on CCTA139, BTCV and LiTS datasets. The
green area indicates False Positive, and the blue area indicates False Negative.

Organs with a lower voxel ratio are gallbladder, esophagus, veins, etc. LiTS is
also a public dataset for liver tumor segmentation. The largest and smallest
tumor volumes are 987.66 cm3 and 0.04 cm3. Compared with large tumors, ex-
tremely small non-salient objects are almost difficult to observe.
Evaluation Metrics. We employ the Dice Similarity Cofficient (DSC)[%], Aver-
age Surface Distance (ASD)[mm] and Hausdorff Distance (HD)[mm] as metrics.
Implementation Details. We adopt a self-supervised training approach, using
the MG-MAE framework for pre-training and combining the MG-MAE encoder
with the UNETR decoder for fine-tuning. We use Dice loss [17] as the loss func-
tion for segmentation of non-salient objects in the fine-tuning stage.

3.2 Comparsion with Sate-of-the-Art Methods

We conduct experiments on the CCTA139, BTCV, LiTS datasets to evaluate
our method, comparing it with several state-of-the-art methods, i.e., U-Net [19],
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Table 1: Comparison with other methods on the CCTA139, BTCV, LiTS
datasets. The best-performing results are highlighted in bold. SL and SSL rep-
resent supervised learning and self-supervised learning with fine-tuning.

Methods CCTA139 BTCV LiTS
DSC↑ ASD↓ HD↓ DSC↑ ASD↓ HD↓ DSC↑ ASD↓ HD↓

SL

UNet(MICCAI’15) 62.75 9.42 43.22 75.65 10.28 32.40 63.49 25.61 34.61
ResUNet(ISPRS’20) 69.06 7.57 24.88 77.35 8.84 23.81 66.81 21.56 27.33

TransBTS(MICCAI’21) 75.48 6.13 17.22 80.87 4.45 18.41 66.48 17.58 18.72
TransUNet(arXiv’21) 75.81 5.80 15.92 80.44 4.19 18.50 67.39 16.34 15.11
UNETR(WACV’22) 76.68 2.33 14.21 79.45 5.53 18.44 66.99 16.81 15.32

CAS-Net(MEDIA’23) 76.93 2.52 8.01 81.00 3.19 16.78 70.29 6.86 12.04

SSL

LoMaR(arXiv’22) 77.56 3.06 7.88 81.43 4.45 12.70 68.56 10.44 13.15
MAE(CVPR’22) 78.62 2.52 7.52 81.49 3.07 12.76 68.83 7.11 12.94

GL-MAE(arXiv’23) 78.44 1.56 5.18 82.05 3.34 9.03 71.10 4.79 10.87
R-MAE(ICLR’24) 79.63 2.15 5.04 81.72 3.37 11.55 70.38 6.01 12.73

FocusMAE(CVPR’24) 78.95 1.87 6.10 81.01 4.14 15.55 69.24 9.97 11.50
SMA(ICLR’24) 79.97 2.47 7.50 81.56 3.53 10.27 69.42 6.25 11.36
MG-MAE(Ours) 80.71 1.63 4.02 82.60 2.02 8.64 71.77 3.86 10.53

ResUNet [6], TransBTS [23], TransUNet [3], UNETR [11], CAS-Net [7], LoMaR
[4], MAE [12], GL-MAE [26], R-MAE [18], FocusMAE [2], and SMA [24]. As
shown in Table 1, our method achieves 80.71%, 82.60%, 71.77% on DSC and
4.02mm, 8.64mm, 10.53mm on HD, respectively. Compared with the supervised
method UNETR, the self-supervised method has been significantly improved;
in the task of non-salient object segmentation, our method is more suitable for
this task. We further conduct a qualitative comparison among these methods.

Table 2: Effectiveness of different components. We employ UNETR as the base-
line and successively add loss functions for effectiveness analysis.

Model Loss component CCTA139 BTCV LiTS
+LGR +LLR +LWLR +LNNM DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓

Baseline - - - - 76.68 14.21 79.45 18.44 66.99 15.32
Model 1

√
- - - 78.62 7.52 81.49 12.76 68.83 12.94

Model 2
√ √

- - 78.99 7.30 82.11 8.53 69.58 12.55
Model 3

√ √ √
- 79.28 6.49 82.24 7.65 70.13 11.20

Model 4 - -
√

- 77.21 8.02 81.16 14.57 69.24 12.64
Ours

√ √ √ √
80.71 4.02 82.60 8.64 71.77 10.53

We select methods with better performance for comparison, such as R-MAE,
GL-MAE, MAE, CAS-Net, and UNETR. As shown in Fig. 2, we show the 2D
and 3D visualizations of each dataset, from top to bottom: CCTA139 dataset,
BTCV dataset, LiTS dataset. It is evident that our method exhibits better
performance with fewer false positives and false negatives in segmentation of
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（d）（b） （f）
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Fig. 3: Analysis of MG-MAE on CCTA139 dataset. We add the aorta of the
coronary artery to show the changes of DSC more clearly. (a) and (b) show the
analysis of global masking ratio and label ratio of different methods. (c) shows
the analysis of local masking ratio of MG-MAE. (d) shows the linear probing
experiment. (e) shows the change of effective rank during MAE and MG-MAE
training. (f) shows the experiments with different reconstruction targets.

non-salient objects. For non-salient objects in the BTCV dataset, such as the
pancreas, gallbladder, and veins, our method achieves DSC scores of 74.56%,
72.75%, and 71.96%, surpassing the current state-of-the-art methods.

3.3 Ablation Study

Effectiveness of different components. We conduct a series of experiments
to demonstrate the effectiveness of each component. Our method includes the
LGR, LLR, LWLR, LNNM . As shown in Table 2, after integrating these loss func-
tions, our method achieves progressively better performance. Compared with
Model 1, Model 2 adds a local branch, achieving DSC improvements of 0.37%,
0.62%, 0.75% across three datasets. Subsequently, Model 3 verifies the effec-
tiveness of the DWA strategy with DSC improvements of 0.29%, 0.13%, 0.55%.
Model 4 proves that a single local branch is not as good as the global branch
in Model 1. Compared with Model 3, our method adds a NNM constraint, and
the effectiveness of this constraint is verified through experiments with DSC im-
provements of 1.43%, 0.36%, 1.64%.
Masking Ratio and Label Ratio. We systematically analyze the performance
of the model during pre-training and fine-tuning. As shown in Fig. 3(a)(c), ex-
perimental results on the CCTA139 dataset show that a global masking ratio of
75% and a local masking ratio of 50% yields the best performance, with a DSC
of 93.78%. For label usage, 60% label utilization achieves near-optimal accuracy,
and full labels are recommended to enhance model robustness in Fig. 3(b).
Linear Probing. We compare the convergence of MG-MAE and MAE in Fig.
3(d), MG-MAE achieves faster convergence and higher DSC in linear probing.
Effective Rank. We compare the effective rank [25] of MG-MAE and MAE in
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Fig. 3(e). As the effective rank of MAE decreases, the dimensional features grad-
ually collapse during the training process. According to the orange line, NNM
effectively solves this issue as the effective rank increases in MG-MAE.
HOG vs Pixel. We compare reconstruction targets in Fig. 3(f), MG-MAE
achieves optimal performance when integrating global Pixel with local HOG.

4 Conclusion

In this paper, we propose the MG-MAE framework for non-salient object seg-
mentation, incorporating both global and local level feature representations.
Crucially, the framework utilizes NNM for enhancing feature diversity and DWA
for optimizing reconstruction by prioritizing challenging patches. Experimental
results demonstrate significant performance improvements over state-of-the-art
methods, highlighting the effectiveness of our method.
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