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Abstract. Accurately recognizing surgical action triplets in surgical
videos is crucial for advancing context-aware systems that deliver real-
time feedback, enhancing surgical safety and efficiency. However, recog-
nizing surgical action triplets (instrument, verb, target) is challenging
due to subtle variations, complex interdependencies, and severe class im-
balance. Most existing approaches focus on individual triplet components
while overlooking their interdependencies and the inherent class imbal-
ance in triplet distributions. To address these challenges, we propose a
novel framework, Curriculum Contrastive learning with feature Mixup
(CurConMix). During pre-training, we employ curriculum contrastive
learning, which progressively captures relationships among triplet com-
ponents and distinguishes fine-grained variations through hard pair sam-
pling and synthetic hard negative generation. In the fine-tuning stage,
we further refine the model using self-distillation and mixup strategies to
alleviate class imbalance. We evaluate our framework on the CholecT45
dataset using 5-fold cross-validation. Experimental results demonstrate
that our approach surpasses existing methods across various model sizes
and input resolutions. Moreover, our findings underscore the importance
of capturing interdependency among triplet components, highlighting the
effectiveness of our proposed framework in addressing key challenges in
surgical action recognition. The official implementation is available at
https://github.com/MIDAS-SurgAI/CurConMix!

Keywords: Surgical Video - Endoscopic Surgery - Surgical Action
Triplet Recognition - Curriculum Learning - Contrastive Learning - Class
Imbalance.
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1 Introduction

Digital storage of surgical videos, made possible by endoscopic technology, has
paved the way for deep learning applications with notable progress [3/4UTITT].
Context-aware deep learning systems provide real-time feedback, enhancing both
surgical safety and efficiency [12]. Surgical actions are commonly represented
as triplets—(instrument, verb, target)[I3], but triplet recognition remains chal-
lenging due to subtle distinctions among triplets, complex interdependencies,
multi-label classification, class imbalance, and limited training data. Existing
approaches address each component independently [T7UT3II5J9I20], overlooking
interdependencies and failing to adequately handle class imbalance. Although
SelfD [21] mitigates class imbalance via self-distillation, it struggles to distin-
guish subtle differences between triplets. Similarly, TERL [5] focuses on tail
classes with instance-level contrastive learning but does not fully consider triplet
relationships.
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Fig. 1. Overview of CurConMix. (a) The curriculum process sequentially incorpo-
rates (target), (instrument, target), and (instrument, verb, target). A pair is positive
only if all components match; otherwise, it is negative. (b) Hard pair sampling and fea-
ture mixup generate challenging negative examples, driving the model to pull positive
pairs closer while pushing negative pairs farther apart.

To address these challenges, we propose a novel framework, Curriculum
Contrastive learning with feature Mixup (CurConMix), as illustrated in
Fig. [l Through curriculum learning [I§], the model gradually trains from sim-
ple to complex tasks, enabling it to learn the interdependencies among triplet
components (Fig. a)). This is combined with supervised contrastive learning
[8] to capture subtle differences between triplets and improves data diversity
by generating various pairwise combinations within a constrained dataset. To
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TERL CurConMix (Ours)

2.0% 95.7%
scissors, cut, cystic duct 8.0%
hook, dissect, gallbladder 0.5%
grasper, retract, liver 1.0%

92.8% 98.2%

Fig.2. Prediction comparison between the TERL method and our framework
on frames containing both majority ((grasper, retract, gallbladder)) and minority
({clipper, clip, cystic duct)) classes.

facilitate effective learning, we introduce a hard pair sampling strategy based
on similarity to anchor features in the embedding space and label information.
Rather than using these hard negative samples directly in training, we create
synthetic hard negative feature vectors through convex linear combinations in
embedding space as shown in Fig. [[{b). During fine-tuning, the model incor-
porates self-distillation [2I] and mixup [22], leveraging soft labels and further
addressing class imbalance.

As a result, our framework achieves superior performance on the CholecT45
dataset [14] compared to existing methods, as validated through the official 5-
fold evaluation. Notably, it consistently outperforms existing methods across
various backbone sizes and resolutions. As shown in Fig. 2| severe class imbal-
ance leads to model overconfidence in the majority class, making predictions on
the minority class challenging. This challenge intensifies when the majority and
minority classes appear simultaneously within the same frame. Under these con-
ditions, considering both inter- and intra-triplet relationships makes the precise
recognition of triplets increasingly difficult. Our approach effectively captures
complex triplet interdependencies, mitigates class imbalance, and distinguishes
subtle triplet variations, addressing critical challenges in surgical action recog-
nition.

In summary, the contributions of our work are as follows:

1. CurConMix models interdependencies among triplet components via cur-
riculum learning and identifies subtle triplet differences through contrastive
learning. Additionally, hard negative sampling and synthetic hard negatives
enhance representation learning by focusing on challenging instances and
increasing data diversity.

2. CurConMix tackles the challenges of limited training samples and severe
class imbalance by generating informative samples through hard pair sam-
pling and synthetic hard negatives, also fine-tuning further refines feature
representations using self-distillation and mixup with soft-label effects. This
leads to more robust predictions, particularly for minority classes.

3. Our proposed framework, CurConMix, achieves state-of-the-art results
on the CholecT45 dataset using official 5-fold cross-validation.
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2 Methods

2.1 CurConMix

In this section, we introduce the pre-training stage of our framework. First,
we provide a detailed explanation of Curriculum Contrastive Learning, which
integrates curriculum learning with contrastive learning to progressively learn
the relationships among triplets in a multi-label dataset. This approach enables
the model to capture subtle differences between triplets more effectively. Sec-
ond, we describe the proposed hard pair sampling strategy, designed to improve
contrastive learning by effectively selecting informative pairs. Lastly, we lever-
age hard negative feature vectors in contrastive learning to enhance the model’s
ability to capture subtle differences between triplets while enforcing the learning
of more robust feature representations.

Curriculum Contrastive Learning This curriculum learning process follows
the sequence: (target), (instrument, target), and (instrument, verb, target), as
shown in Fig. [[[a). According to [I2], performance on (target) is the lowest
among the triplet components. Furthermore, since the (verb) representing the
action can be determined only after identifying both the (instrument) and (tar-
get), the curriculum process was designed in this order, which also achieved the
best performance among various curriculum designs.

To improve the model’s ability to capture subtle distinctions between triplet
classes, we integrate contrastive learning with curriculum learning. Label infor-
mation is used for pair generation, ensuring that a pair is positive only when all
labels match exactly, as illustrated in Fig. (a). The following sections provide
a detailed explanation of sampling hard pairs for contrastive learning.

Hard Pair Sampling In contrastive learning, the selection of training pairs
plays a crucial role in determining model performance [7]. Therefore, for effective
supervised contrastive learning, we propose a hard pair sampling strategy that
leverages feature vectors and label information to select challenging positive and
negative samples. Hard pair sampling is performed individually for each sample
within a batch, meaning that each instance is assigned appropriately selected
hard pair samples.

To achieve this, we first extract features from all training samples using a pre-
trained model and compute the cosine similarity scores between sample pairs.
Then, based on the precomputed similarity scores and label information, we
identify hard negative and hard positive samples for each instance. The selection
criteria for positive and negative samples vary depending on the curriculum
stage. For example, as shown in Fig. (a), when the curriculum stage is set to
<instrument, target>, the positive and negative pairs are determined based on
both the instrument and target values.

For hard pair sampling, hard negative samples are selected as those most
similar to a given instance while belonging to a different class. Specifically, for
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each instance ¢ in a batch (i.e., the anchor sample), we construct a set of potential
negative candidates Hpeg(2), which includes all samples with labels different
from the anchor. From negative candidate set, we utilize the precomputed cosine
similarity scores s(i, j) to select the top N hardest negative samples—those with
the highest similarity to the anchor, defined as:

Tneg (1) = {J € Hneg (%) | s(i,7) ranks in the top-N} (1)

To ensure the model encounters diverse hard negatives across training, a ran-
domly sampled subset of the top N hard negatives is used for training, defined
as:

N(i) € Tnes(2) (2)

For hard positive sampling, for each instance i in a batch (i.e., the anchor sam-
ple), we construct a set of potential positive candidates Hpos(%), consisting of all
samples that share the same label as the anchor. From positive candidate set,
we select the top K hardest positive samples—those with the lowest similarity
scores within the same class—defined as:

Tpos(i) = {J € Hpos(9) | s(4,7) ranks in the bottom-K'} (3)

A single positive pair is then randomly selected for each instance in the batch,
defined as:
Pi € Tpos(i) (4)

The selected pairs—hard positives with low similarity and hard negatives with
high similarity—are used in contrastive learning to expose the model to more
challenging examples. This sampling strategy ensures that the model learns from
both challenging inter-class negatives and difficult intra-class positives, improv-
ing feature discriminability.

Enhancing Contrastive Learning with Hard Negatives. To enhance the
effectiveness of hard pair sampling in contrastive learning, we generate syn-
thetic hard negatives by combining selected challenging samples, as illustrated
in Fig. b). Each synthetic feature vector is obtained as a convex linear combi-
nation, where the combination ratio A is drawn from a beta distribution, defined
as:

05 = Avp, + (L= XN)vp,, n1,n2 € N(i) (5)

A ~ Beta(a, a) (6)

By integrating a novel hard pair sampling strategy and synthetic hard negative
features into contrastive learning, this approach enhances the model’s ability to
capture subtle differences between triplets while enforcing the learning of more
robust features. Moreover, by increasing the diversity of informative samples,
it addresses challenges associated with limited data and mitigates overfitting
caused by severe class imbalance. Consequently, the model learns more robust
and discriminative feature embeddings. For supervised contrastive learning, we
adopt the SupCon loss proposed in [§].
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2.2 Mitigating Class Imbalance with Soft Labels

To address class imbalance and label ambiguity, we adopt a self-distillation
framework, as demonstrated in [2I] using the CholecT45 dataset [I4]. In this
framework, a teacher network M is initially trained using ground-truth multi-
label annotations y € {0,1}¢ with a binary cross-entropy (BCE) loss:

C
Locacher = = Z (e 1og(3) + (1 = o) log(1 — 4)] (")

where yc = Mr(z). denotes the predicted score for class c. A student model
Mg is then trained to mimic the teacher’s soft targets using the following BCE
loss:

Lonient = Cz[ Nog(3)) + (1= 5P log(1 = 5)] . (8)

where yc = Mg(z). is the student’s prediction. By leveraging soft labels, this
approach reduces the adverse effects of class imbalance and annotation noise,
promoting smoother decision boundaries and enhanced robustness.

We further extend this framework by incorporating a simple yet effective
mixup strategy [22] during fine-tuning. By applying mixup to both teacher and
student models, we encourage smoother label transitions and improved gener-
alization. In addition, mixup increases training data diversity by producing in-
terpolated sample combinations, which is particularly advantageous in scenarios
with limited data and pronounced class imbalance. This integration of mixup
enhances the robustness and overall performance of the model.

3 Experiments

3.1 Dataset and Evaluation Metrics

Our study uses the CholecT45 dataset, a subset of Cholec80 [19]. CholecT45
consists of 45 videos of cholecystectomy procedures, totaling 90,489 frames. Each
frame is annotated with an action triplet (instrument, verb, target), covering 100
distinct classes across 6 types of instruments, 10 types of verbs, and 15 target
classes. As a multi-label dataset, each frame may include multiple triplets as the
labels, with a severe class imbalance across labels. To evaluate the effectiveness
of our framework, we use the official 5-fold validation split of CholecT45 [14].
Consistent with prior studies [I3IT5I2TIBIT6I26], we validate performance using
triplet average precision APy 1.

3.2 Implementation Details

Model. Our experiments employ the Swin Transformer [I0] in Tiny and Base
configurations, with two Base model variants that differ in input size and window
size. Models are implemented in the timm library and trained on an NVIDIA
GeForce RTX 4090.
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Table 1. Comparison of single models from different approaches on the provided 5-fold
validation split of the CholecT45 dataset. Bold font indicates the best performance
within comparable models. Results marked with { were reproduced using the official
code. TERL-B(384) was reproduced with a batch size of 12 due to hardware constraints.

Method Backbone AP[ APV APT AP[V AP[T AP[VT
RDV [I5] Res18 89.3£2.1 62.0£1.3 40.0+1.4 34.0+£3.3 30.8+2.1 29.44+2.8
RiT [16] Res18 88.61+2.6 64.0£2.5 43.44+1.4 38.3£3.5 36.94+1.0 29.7+2.6
TDN [2] Resb0 91.24+1.9 65.3+2.8 43.7+1.6 - - 33.84+2.5
MT4MTL-KD [6] SwinL(384) 93.14+2.1 71.8+3.4 48.84+3.8 44.9+2.4 43.1+£2.0 37.1+0.5
SelfD |21] SwinB(224)T 90.3+2.3 67.4£1.5 47.941.8 43.7£4.1 42.94+1.6 37.1£1.9
TERL-T [5] SwinT(224)T 93.54+1.5 71.4+2.2 47.242.6 44.7+3.8 42.04+2.4 35.7+1.6
TERL-B [5] SwinB(224)T 93.942.0 70.8+2.3 49.44+4.7 43.9+3.4 43.64+2.6 35.6+1.4
TERL-B [5] SwinB(384)T 94.14+2.3 73.0£1.4 51.14+3.8 46.5+£4.9 44.94+1.8 37.7£1.5

TERL-Ens [5] Ensemblel 94.6£1.9 73.541.9 50.84:3.3 47.34+4.1 45.3+1.9 38.5+1.1

CurConMix-T SwinT(224) 90.4+2.1 67.84+1.8 48.3+3.4 43.3+2.9 43.3+1.8 37.7+2.1
CurConMix-B SwinB(224) 90.443.0 68.24+1.5 49.7+2.5 44.84+5.4 45.3+2.4 38.8+2.8
CurConMix-B SwinB(384) 90.942.0 68.3+1.3 49.8+£3.2 45.244.2 45.1+1.1 39.1+£2.0
CurConMix-Ens  Ensemble 91.742.2 69.5+£0.4 51.34+2.9 46.3+5.0 47.1£1.6 40.7+2.1

CurConMix. We follow [22] and set o = 0.4 as the default setting for both fea-
ture mixup and input mixup. For hard negatives, the top N = 1024 are selected,
following [7], with S = 63 negatives used during training. Positive samples are
selected as K = min(1024, samples per class) and the contrastive loss temper-
ature 7 is set to 0.1, as per [8]. The hyperparameters for self-distillation align
with those in [21].

3.3 Comparison with Existing Methods

In this section, we evaluate the performance of our framework and existing meth-
ods, including RDV [15], RiT [16], TDN [2], SelfD [2I], MT4MTL-KD [6], and
TERL [5]. As shown in Table |1} our approach outperforms previous methods
by a significant margin across all model backbones. For instance, compared to
SelfD, our method improves APy metric from 37.1% to 38.8%. Notably, while
MT4MTL-KD utilizes the larger Swin-Large (384) model, our method surpasses
it even with the more lightweight Swin-Tiny (224) model, improving AP from
37.1% to 37.7% while requiring fewer computational resources. Additionally, our
approach surpasses TERL, elevating AP from 35.7% to 37.7% on Swin-Tiny
(224) model, from 35.6% to 38.8% on Swin-Base (224) model, and obtaining
the highest performance of 39.1% on Swin-Base (384) model. Although TERL
focuses on individual components within a triplet and thus reports strong perfor-
mance when each component is considered separately, our model demonstrates
superior performance in triplet prediction by effectively capturing the interde-
pendencies among triplet components.

Furthermore, we conducted a performance comparison by ensembling Swin-
Base (224) and Swin-Base (384). The ensemble method averages the class-wise
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Table 2. Ablation study on the components of our framework, CurConMix, showing
performance improvement as each component is added. The first row represents the
baseline model, marked with an *.

Contrastive  Curriculum Input Mixup Feature Mixup AP ;yr

37.1*
v 37.8
v v 38.1
v v v 38.3
v v v v 38.8

predictions from both models to generate the final outputs. Under this ensem-
ble setting, our method achieves 40.7%, significantly outperforming TERL’s
38.5%. These results demonstrate the robustness of our framework across differ-
ent model sizes and underscore the importance of capturing interdependencies
among triplet components for robust performance.

3.4 Ablation Study

To validate the effectiveness of each component in CurConMix, we conducted an
ablation study. The baseline for this experiment is SelfD [21]], which corresponds
to CurConMix without any additional components. Each component was incre-
mentally added to assess its impact on performance. The results of the 5-fold
validation are presented in Table [2] The inclusion of contrastive learning im-
proved performance to 37.8% (+0.7%). The addition of curriculum contrastive
learning further enhanced performance to 38.1% (40.3%). Incorporating input
mixup led to an increase to 38.3% (+0.2%). Finally, the integration of feature
mixup provided the highest boost, achieving 38.8% (+0.5%). The progressive
performance gains indicate that each component contributes to improving the
model’s ability to achieve precise triplet recognition. When all components are
utilized, the model achieves the highest performance, highlighting its effective-
ness in addressing severe class imbalance and enabling robust triplet recognition
under challenging conditions.

4 Conclusions

In this paper, we address the challenges of surgical action triplet recognition,
including class imbalance, subtle inter-triplet variations, and complex compo-
nent interdependencies. We propose a novel framework, CurConMix, to effec-
tively tackle these issues. CurConMix employs curriculum contrastive learning
to progressively capture relationships between triplet components. At each step,
hard pair sampling and synthetic hard negative features enhance feature ro-
bustness. During fine-tuning, self-distillation and input mixup are applied to
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mitigate class imbalance and promote effective knowledge transfer. Through ex-
tensive experiments on the CholecT45 dataset, our framework consistently out-
performs existing models across different backbones and resolutions. Moreover,
we demonstrate that capturing the interdependencies among triplet components
significantly improves recognition performance. While our framework improves
triplet recognition, exploring additional techniques such as temporal modeling or
unsupervised learning could further enhance performance. We believe our work
offers valuable insights into surgical scene understanding and will inspire future
research in complex action recognition tasks.
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