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Abstract. Accurate lung cancer localization and classification in com-
puted tomography (CT) images are vital for effective treatment. How-
ever, existing approaches still face challenges such as redundant infor-
mation in CT images, ineffective integration of clinical prior knowledge,
and difficulty in distinguishing subtle histological differences across lung
cancer subtypes. To address these, we propose Cross-Modal Detection
Auxiliary Classification (CM-DAC), a framework enhancing classifica-
tion accuracy. It employs a YOLO-based slice detection module to ex-
tract lesion areas, which are processed using the Multimodal Contrastive
Learning Pretrain (MCLP) module, minimizing redundancy. Specifically,
MCLP aligns 3D patches with clinical records via a cross-modal hier-
archical fusion module, integrating image and clinical features through
attention mechanisms and residual connections. Additionally, we em-
ploy multi-scale fusion strategies to further enhance histological dis-
tinction by capturing features at different resolutions. Simultaneously, a
text path expands category labels into semantic vectors using a medical
ontology-driven text augmentation approach. These vectors are encoded
and aligned with fusion feature vectors. Experimental results on both
private and public datasets confirm that the proposed CM-DAC out-
performs competitive methods, achieving superior classification perfor-
mance. The code is available at https://github.com/fancccc/CM-DAC.

Keywords: Lung Cancer Subtyping · Hierarchical Attention Fusion ·
Medical ontology.

1 Introduction

Lung cancer remains the leading cause of cancer-related deaths worldwide, ac-
counting for over 18% of such fatalities in 2023 [18]. Early and accurate diagnosis
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of pulmonary nodules, which are critical precursors to lung cancer, is essential
for improving patient survival rates [14,2]. Although Computed Tomography
(CT) scans are widely used imaging modalities for nodule evaluation due to
their ability to capture detailed spatial characteristics of small lesions, their
clinical usefulness is limited by significant challenges. Firstly, a single CT scan
produces hundreds of cross-sectional slices, many of which contain redundant in-
formation, such as normal tissue interference and artifacts. Secondly, pulmonary
nodules vary greatly in morphology, density, and margin characteristics. These
issues contribute to diagnostic errors by radiologists, with rates of misdiagnosis
and missed diagnoses reported between 10% and 26% [20]. These limitations
highlight the urgent need for the development of automated, high-precision al-
gorithms for diagnosing pulmonary nodules.

The rapid advancement of deep learning has significantly advanced pul-
monary nodule analysis in CT imaging [12]. Early approaches relying on manu-
ally engineered features with conventional neural networks [9] faced limitations
in generalizability due to their dependence on subjective feature selection. The
emergence of Convolutional Neural Networks marked a paradigm shift, with
Faster R-CNN [16] demonstrating the feasibility of automated 2D nodule detec-
tion. However, its inability to model 3D contextual relationships across CT slices
remained a critical constraint. Subsequent 3D architectures like 3D ResNet [6]
addressed this spatial modeling challenge [13], while transfer learning strate-
gies partially mitigated data scarcity issues [8]. Nevertheless, as noted in recent
studies [5], these single-modal approaches still struggle with classifying subtle
lesions and fail to leverage complementary clinical data modalities such as ge-
nomic profiles or pathology reports. Recent multimodal frameworks attempt to
bridge this gap. SAMA [1] pioneers cross-modal fusion through self-attention
mechanisms between CT and RNA Sequencing (RNA-seq) data, while Con-
trastive Language–Image Pretraining (CLIP) [15]-inspired models like CLIP-
Lung [10] and CMMF [4] explore vision-text alignment. However, as evidenced
by TMSS [17], current methods face inherent limitations static feature interac-
tion that overlooks lesion evolution patterns. MultiSurv [19] further highlights
the persistent semantic disconnect between low-level imaging features and high-
order clinical concepts. In summary, current methods face three main challenges,
including redundant information in CT images, ineffective integration of clinical
prior knowledge, and difficulty in distinguishing subtle histological differences
across lung cancer subtypes.

To tackle these challenges, this paper introduces an end-to-end CM-DAC
framework that seamlessly integrates detection with classification models. The
detection stage employs the YOLOv11 [7] model to extract 2D slices from the
original CT images, facilitating the training of the detection model. From the
identified lesion locations, fixed-size 3D patches are cropped and fed into a 3D
ResNet network for feature extraction. During feature fusion, a novel attention
mechanism is utilized to merge multi-scale image features with prior clinical
information, resulting in semantically enriched cross-modal features. For text
labels, medical terminology is used for text augmentation, and a text encoder is
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Fig. 1: Overview of the CM-DAC framework: (a) YSD module for CT image
detection and ROI extraction; (b) MCLP module for multimodal-text contrastive
learning; (c) Zero-shot prediction for end-to-end classification results.

applied for encoding these labels. Contrastive learning then aligns the labels with
their corresponding feature vectors. In the inference phase, the network processes
the raw CT image and prior clinical information. Initially, the detection mod-
ule extracts the lesion area, followed by Region Of Interest (ROI) cropping and
category classification using the Multimodal Contrastive Learning Pretraining
(MCLP) module, calculate the cosine similarity with pretrained label weight and
find the maximum as the result. Our main contributions include: (1) Detecting
target regions and removing irrelevant areas to reduce interference from redun-
dant information in CT images; (2) Aligning clinical priors with lesion image
features to guide the model in prioritizing relevant image characteristics; and
(3) Implementing multi-scale feature fusion to enhance lesion recognition across
different scales.

2 Proposed Method

Our method, as illustrated in Fig. 1, processes three input modalities, {I,R, T }
representing 3D CT images, clinical records, and textual labels, respectively. The
YOLO-based Slice Detection (YSD) module analyzes I to generate lesion regions
(P) from I, which are encoded as fp using a 3D ResNet in MCLP. Meanwhile,
R is encoded by a fully connected network as fr. The Cross-Modal Hierarchi-
cal Fusion (CMHF) module integrates the features fr and fp. Simultaneously,
T is expanded into radiological descriptions and encoded via a biomedical text
encoder, enabling contrastive learning between the multimodal-text pairs. Dur-
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Fig. 2: The architecture of the CMHF encoder, which is used to integrate clinical
records and images through feature fusion.

ing the zero-shot inference phase, the system matches the detected lesions with
textual prototypes in the embedding space, producing category predictions.

2.1 YOLO-base Slices Detection Module

The training process for the model’s detection branch, as shown in Fig. 1(a), be-
gins with an input I ∈ RW×H×D. The detection module then proceeds through
several stages to generate ROI patches P ∈ RP×P×P . First, lesion-aware slice
selection is performed, extracting 2D axial slices S = {si}Ni=1 from I that contain
lesions annotated by radiologists. Mdet is trained on the extracted slices S. For
each predicted 2D bounding box bk in slice sj , the 3D lesion centroid (xc, yc, zc)
is calculated. This involves axial continuity validation, requiring an Intersection
over Union of at least 0.7 across three consecutive slices. Finally, the ROI volume
extraction step crops cubic subvolumes P centered at (xc, yc, zc) with an edge
length of 32mm, including a 15 mm margin around the lesion. The 32mm crop
size aligns with clinical standards (>30mm = mass) and dataset stats (mean:
23.69mm; 75th %ile: 29mm).

2.2 Mutilmodal Contrastive Learning Pretrain Module

As illustrated in Fig. 1(b), our MCLP module utilizes specialized encoders for
three distinct input modalities. Initially, the 3D ResNet backbone encodes P,
producing multi-scale features: fp = {f i

p}4i=1, where each f i
p is represented as

RB×256×Wi×Hi×Di . These features are extracted from the last four layers of
the ResNet. Meanwhile, R is processed through a fully-connected network to
yield compact representations: fr ∈ RB×256. For T , clinical template expansion
translates labels like "invasive adenocarcinoma" into more detailed descriptions,
such as "A pulmonary nodule showing histologic features of invasive adeno-
carcinoma." These narratives are encoded by a CLIP text encoder to generate
ft ∈ RB×256.
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Next, we integrate the clinical records and CT features using the CMHF
encoder, as shown in Eq. 1, resulting in the fused feature representation:

fpr = Ψ(fp, fr) ∈ RB×256, (1)

where Ψ(·) signifies our CMHF Encoder, as depicted in Fig. 2. This module pro-
cesses fp and fr through hierarchical fusion mechanisms for seamless integration.
For the tabular clinical features fr, we use parallel projection heads to generate
scale-specific embeddings:

f i
r = σ(W

(2)
i · σ(W(1)

i fr + b
(1)
i ) + b

(2)
i ), (2)

where σ denotes the ReLU activation function, and {W(k)
i ,b

(k)
i } are learnable

parameters for each scale i.
For each set of features {f i

p, fr}, we introduce a Multi-level Attention Fusion
mechanism. A significant innovation in our module is the scale-adaptive attention
mechanism, which enhances the integration of information across different scales
at each hierarchical level i, as outlined in Algorithm 1.

Algorithm 1 Multi-level Attention Fusion

1: Input: f i
p, fr, αi, dimensions Di, Hi, Wi, batch size B

2: Compute Ni = Di ×Hi ×Wi, Ki ← f i
p, Vi ← f i

p

3: Step 1: Spatial-to-Sequence Transformation
4: Reshape CT features: f i

p ← reshape(f i
p, (Ni, B, 256))

5: Step 2: Dynamic Clinical Expansion
6: Project clinical embeddings: Qi ←Eq. 2(fr)
7: Step 3: Context-Aware Attention
8: Compute cross-modal interaction:

Ai = Softmax
(
QiK

T
i√

dk

)
Vi

9: Step 4: Residual Fusion
10: Combine attention maps with original CT features:

f i
p
′
= f i

p + αi · Reshape(Ai)

11: Return: f i
p
′

In the Multi-scale Aggregation module, the fused features {f i
p
′} undergo

adaptive pooling and are then combined with the enhanced clinical features.
This procedure is expressed by the equation:

fpr = Wp · Concat
(
{Pool({f i

p

′})}, fr
)
, (3)

resulting in the final joint representation fpr ∈ RB×256, which is utilized for sub-
sequent tasks. This architecture provides several benefits: it ensures precise align-
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ment between anatomical structures and clinical indicators, preserves modality-
specific patterns through residual learning, and enables adaptive weighting of
cross-modal evidence across spatial hierarchies.

Finally, the framework improves modality alignment using contrastive learn-
ing. The loss function is defined as:

Lcon = −
B∑
i=1

log
exp(⟨fpri , fti⟩/τ)∑B
j=1 exp(⟨fpri , ftj ⟩/τ)

, (4)

where τ represent the temperature hyperparameter (we set τ = 0.07, a standard
choice in contrastive learning), and ⟨·, ·⟩ represents cosine similarity.

2.3 Zero-shot Prediction

The inference process is illustrated in Fig. 1(c). The inputs include raw CT
images and clinical information. During the detection phase, each slice of the
3D image is processed, and results from all layers are combined. The position of
the target region along the vertical axis is determined by calculating the IoU.
Subsequently, a lesion block is cropped based on this position. The cropped
lesion block is then fed into the MCLP module for classification. Within this
module, the similarity between the fused features and all category vectors is
calculated. The category vector with the highest similarity is selected as the
predicted result. In conclusion, the model outputs the type of lesion. We evaluate
model performance using Accuracy (Acc), Precision (Pre), Recall (Rec), F1-
Score (F1), and AUC. For multi-class classification, all metrics are computed
using macro averaging.

3 Experiments

3.1 Dataset and Implementation

Private Dataset. The dataset was collected from our collaborating hospital,
and consists of 1,614 cases of lung adenocarcinoma from 1,430 anonymous pa-
tients. Each case includes CT scan images, clinical data, and bounding boxes
indicating tumor locations. The dataset is categorized into three groups: in-
vasive adenocarcinoma, microinvasive adenocarcinoma, and adenocarcinoma in
situ, comprising 53.5%, 24.1%, and 22.4% of the cases, respectively. The clin-
ical data were obtained through various pathological tests and were carefully
evaluated by experienced medical professionals. This data includes demographic
details such as patient age and gender, along with lesion-specific morphological
characteristics, including tumor margin, density, shape, and location.

The open-source LPCD dataset, as referenced in [11], includes the same
modalities as our dataset. It comprises 342 lung cancer cases, categorized into
adenocarcinoma, small cell carcinoma, large cell carcinoma, and squamous cell
carcinoma. Due to the limited number of squamous cell cases, the large cell and
squamous cell categories are combined, creating a three-class dataset. The class
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Table 1: Comparison of the proposed method with baseline methods and state-
of-the-art approaches on the LPCD and the private datasets (%). Bold text
highlights the best indicator, while underlined text represents the second-best.
↑ indicates an increase, and ↓ indicates a decrease.
Data Method Acc Pre Rec F1 AUC

LPCD
[11]

ResNet18 [6] 71.01 23.67 33.33 27.68 50.00
ViT [3] 71.01 23.67 33.33 27.68 64.87
nnMamba [5] 72.06 24.02 33.33 27.92 46.05
CLIP-Lung [10] 72.46 42.04 49.08 44.95 76.73
TMSS [17] 79.71 76.67 61.59 63.33 79.62
MultiSurv [19] 78.26 49.89 65.31 56.46 78.87
CM-DAC (Ours) 80.88↑1.17 88.57↑11.9 64.00↓1.31 63.06↓0.27 84.91↑5.29

Private

ResNet18 [6] 60.29 29.00 31.97 30.40 75.04
ViT [3] 69.35 61.88 61.81 61.84 80.97
nnMamba [5] 65.42 47.55 58.30 48.85 85.08
CLIP-Lung [10] 71.52 65.05 65.26 64.64 85.60
TMSS [17] 78.95 74.79 76.58 75.45 88.96
MultiSurv [19] 74.92 70.28 68.46 68.72 88.45
CM-DAC (Ours) 80.06↑1.11 76.05↑1.26 77.62↑1.04 76.71↑1.26 90.26↑1.30

distributions are 70.7% adenocarcinoma, 17.3% small cell carcinoma, and 12.0%
for the merged large and squamous cell carcinoma category.

Implementation Details. The CT data are first resampled to 1mm isotropic
resolution, then preprocessed by applying a window level of -600 and a window
width of 1500, followed by standardization. Clinical records are handled us-
ing one-hot encoding for categorical variables and min-max normalization for
numerical variables to ensure consistency across features. The experiments are
conducted in an environment using Python 3.10.12, PyTorch 2.3.1+cu121, and
NVIDIA L20 GPUs. The Adam optimizer is employed with a learning rate of
0.00025 and a weight decay of 0.0001. Additionally, the learning rate is adjusted
using the ReduceLROnPlateau scheduler, and training is performed over 200
epochs. To improve the model’s generalizability and ensure comprehensive uti-
lization of the data, independent 5-fold cross-validation was performed on each
dataset. Basic augmentations, such as flipping and rotation, were applied to
address class imbalance.

3.2 Experiment Results

Detection Module Analysis. Our YOLOv11-based lesion localization mod-
ule achieved optimal single-class detection performance with the lightweight
YOLOv11n variant (mAP50=0.701). However, its effectiveness diminished in
multi-class scenarios (mAP50=0.467), revealing inherent limitations in differen-
tiating subtle inter-class variations, a critical challenge addressed by our subse-
quent cross-modal classification framework.



8 Authors Suppressed Due to Excessive Length

Table 2: Ablation Results on the private dataset (%). CMHF is replaced by
Addition, and CL is replaced by Classifier.

Method Acc Pre Rec F1 AUC
w/o R 65.42 61.10 62.09 60.99 81.57
w/o CMHF CL 75.39 70.28 70.98 69.96 87.72
w/o CMHF 76.95 72.07 73.73 72.70 88.78
w/o CL 78.19 74.31 72.73 73.37 90.63
CM-DAC (Ours) 80.06 76.05 77.62 76.71 90.26

Comparison with Other Methods. This study validates the effectiveness
of CM-DAC using both the public LPCD dataset and our private dataset. As
shown in Table 1, the multimodal approach (CLIP-Lung [10], TMSS [17], Mul-
tiSurv [19]) significantly outperforms single-modal baseline models (ResNet [6],
ViT [3], nnMamba [5]) on both datasets, with improvements in Acc, Pre, Rec,
F1, and AUC. On the LPCD dataset, the multimodal approach improves ac-
curacy by 8.82% and AUC by 20.04%. On our private dataset, accuracy and
AUC improve by 10.71% and 5.18%, respectively, highlighting the importance
of integrating clinical text and image data for effective modeling.

CM-DAC, utilizing cross-modal hierarchical alignment mechanism, achieves
superior performance, surpassing the second-best method by 1.17% in accuracy,
11.9% in precision, and 5.29% in AUC on the LPCD dataset, with an accuracy of
80.88%, precision of 88.57%, and AUC of 84.91%. This model also demonstrates
a significant advantage in reducing false positives, as indicated by its precision,
which is 3 times the standard (26.64%) deviation higher than other methods.
For the private dataset, CM-DAC leads in all metrics. It achieves an accuracy
of 80.06% and an AUC of 90.26%, with improvements of 1.11% and 1.30%,
respectively, over the second-best TMSS model. All metrics show gains of over
1%, demonstrating the model’s robust cross-institution generalization capability.
These results suggest that the feature fusion strategy guided by pathological
semantics effectively coordinates the complementary information from image
representations and clinical data, thereby enhancing diagnostic accuracy and
ensuring model robustness.

Ablation Study. To verify the effectiveness of each module, we conducted
ablation experiments, and the results are presented in Table 2. Firstly, removing
the clinical information resulted in a significant decrease in the model’s accu-
racy to 65.42%, underscoring the importance of clinical data in our model. We
then performed ablation on the CMHF and Contrastive Learning (CL) mod-
ules. Excluding the CMHF module led to a 1.25% decrease in accuracy, while
the removal of the CL module resulted in a 2.49% drop. More critically, when
both modules were excluded together, the accuracy fell by 4.05%. This indicates
that both the CMHF and CL modules not only contribute significantly to the
model’s performance individually but also have a strong synergistic effect when
combined, leading to a substantial overall improvement. Finally, the complete
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network achieved optimal results across all metrics, validating the effectiveness
of each module in enhancing the model’s performance.

4 Conclusion

This paper presents the end-to-end CM-DAC network for lung cancer diagnosis.
The network leverages the YSD module to address the issue of redundant infor-
mation in CT images. The CMHF module adopts an attention mechanism and
multi-scale feature fusion to align clinical priors with CT images and spatial fea-
tures at different scales, ensuring the effective utilization of both modal informa-
tion and their combined features. This approach helps capture subtle differences
between categories. Extensive experiments and ablation studies demonstrate su-
perior performance in identifying subtle histological differences across subtypes.
In the future, we intend to incorporate large language models to process raw
clinical data, further enhancing the model’s usability and robustness.
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