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Abstract. Quantitative magnetic resonance imaging (qMRI) requires multi- 
phase acquisition, often relying on reduced data sampling and reconstruction al-
gorithms to accelerate scans, which inherently poses an ill-posed inverse prob-
lem. While many studies focus on measuring uncertainty during this process, few 
explore how to leverage it to enhance reconstruction performance. In this paper, 
we introduce PUQ, a novel approach that pioneers the use of uncertainty infor-
mation for qMRI reconstruction. PUQ employs a two-stage reconstruction and 
parameter fitting framework, where phase-wise uncertainty is estimated during 
reconstruction and utilized in the fitting stage. This design allows uncertainty to 
reflect the reliability of different phases and guide information integration during 
parameter fitting. We evaluated PUQ on in vivo T1 and T2 mapping datasets 
from healthy subjects. Compared to existing qMRI reconstruction methods, PUQ 
achieved the state-of-the-art performance in parameter mappings, demonstrating 
the effectiveness of uncertainty guidance. Our code is available at 
https://github.com/Haozhoong/PUQ. 

Keywords: qMRI reconstruction, Uncertainty guiding, Parameter fitting, Deep 
learning. 

1 Introduction 

Quantitative magnetic resonance imaging (qMRI) quantifies tissue properties such as 
T1 and T2 relaxation times, enabling consistent measurements across different scanners 
and protocols. The primary approach to obtaining quantitative values involves acquir-
ing multi-phase images to estimate parameters within a signal model of interest. How-
ever, this process requires multiple acquisitions, resulting in longer scan times com-
pared to conventional MRI. 

With the widespread adoption of deep learning (DL), numerous DL-based methods 
have been explored to accelerate qMRI. Most approaches [9,10,12,13] utilize convolu-
tional neural networks (CNNs) to recover parameter maps from undersampled data. 
However, due to the ill-posed nature of this inverse problem and the complexity of 
CNN models, these acceleration methods introduce considerable uncertainty in their 
outputs. This uncertainty is particularly problematic for qMRI, as it directly affects 
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tissue property measurements, which hold critical diagnostic value. While extensive 
research [1,8,18,26] has addressed uncertainty quantification in DL-based conventional  

 
Fig. 1. Illustration of phase-wise uncertainty. The first row presents reconstructed images across 
eight TEs for T2 mapping, while the second row shows the corresponding residual errors. The 
bottom panel displays signal curves at the location marked by the orange point. The measured 
uncertainty reflects the reconstruction reliability across different phases. 

MRI acceleration, studies on uncertainty in qMRI have also emerged [5,6,21]. How-
ever, existing work primarily focuses on quantifying uncertainty in the reconstruction 
process rather than leveraging it to improve reconstruction accuracy. 

The challenge of utilizing uncertainty rather than measurement alone partly due to 
the nature of most uncertainty quantification approaches, which are simultaneous [4,7] 
with the prediction. In other words, by the time uncertainty is acquired, the reconstruc-
tion is already complete, which is why its application is often limited to downstream 
tasks [2,3,15,17]. However, qMRI inherently involves two tasks: undersampled data 
recovery and parameter estimation. This two-step reconstruction framework naturally 
provides an opportunity to integrate uncertainty. More importantly, aliasing from un-
dersampling is a key source of uncertainty in qMRI. In practice, different contrast 
phases in qMRI exhibit distinct undersampling patterns for additional information [20], 
resulting in varying aliasing distributions, which also impact the reconstruction relia-
bility of CNN models. Thus, the uncertainty from the phase dimension is particularly 
informative, as it can indicate which phases are more reliable for parameter estimation, 
as illustrated in Figure 1. 
Based on the above insights, we propose a Phase-wise Uncertainty Guided qMRI re-
construction (PUQ) method, which employs a two-stage framework for reconstruction 
and parameter fitting, measuring uncertainty in different phases and using it to guide 
the integration of information during fitting. The proposed PUQ method was evaluated 
on an in-vivo dataset for both T1 and T2 mapping, where phase-wise uncertainty 
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demonstrated its potential to enhance fitting accuracy. Across various undersampling 
factors, PUQ consistently achieved the lowest reconstruction error in parameter map-
ping compared to three existing qMRI acceleration methods [9,10,12]. To the best of 
our knowledge, this is the first approach to leverage uncertainty for improving MRI 
reconstruction accuracy. 

 
Fig. 2. The overall framework of proposed PUQ. A. Unrolled reconstruction model for multi-
phase image reconstruction with MC Dropout. B. CNN Denoiser used in unrolled reconstruction 
model. C. Pixel by pixel parameter fitting guided by phase-wise uncertainty. 

2 Methods 

An overview of PUQ is shown in Fig. 2. The two-stage qMRI reconstruction consists 
of multi-phase image reconstruction and the uncertainty guided parameter fitting. An 
unrolled CNN with Monte Carlo (MC) dropout [4] is used to measure uncertainty for 
each phase in the recovered images. This uncertainty reflects the reliability of each 
phase, aiding in the effective information integration of signals across phases. Guided 
by the phase-wise uncertainty, parameter fitting is then performed pixel by pixel using 
a Multi-Layer Perceptron (MLP). 

2.1 Reconstruction with MC Dropout 

Figure 2(A) illustrates the unrolled model designed for multi-phase image reconstruc-
tion. The zero-filled images serve as inputs for five iterations (N=5) within a CNN de-
noiser and a data consistency (DC) layer, which projects the measured k-space data into 
the denoised images, following [22]. The denoiser weights are not shared across itera-
tions. To facilitate Monte Carlo sampling, dropout layers are incorporated into the mid-
dle three hidden layers of the CNN denoiser, as depicted in Fig. 2(B). The image re-
construction problem could be seen as an approximation to such maximum a posteriori 
(MAP) inference for the predictive distribution: 
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𝑝𝑝(x|x𝑢𝑢) = �𝑝𝑝(x|x𝑢𝑢,θ)𝑝𝑝(θ|𝒟𝒟)𝑑𝑑θ (1) 

where the x and x𝑢𝑢 represent the image and the paired zero-filled image, and 𝒟𝒟 denotes 
the dataset. The posterior distribution 𝑝𝑝(θ|𝒟𝒟) could be approximated by sampling net-
work weight sample θ by dropped activations according to a Bernoulli distribution. 
With T samples drawn (θ𝟏𝟏, … , θ𝑻𝑻), the predictive mean is considered as the estimated 
images x�𝜇𝜇 and the uncertainty is represented by the standard deviation 𝝈𝝈: 

x�𝜇𝜇 =
1
𝑇𝑇
�𝑓𝑓θ𝑡𝑡
𝑇𝑇

𝑡𝑡=1

(x𝑢𝑢), 𝝈𝝈 = �
1
𝑇𝑇
�(x�𝜇𝜇 − 𝑓𝑓θ𝑡𝑡
𝑇𝑇

𝑡𝑡=1

(x𝑢𝑢))2 (2) 

where 𝑓𝑓 denotes the forward pass of the unrolled model. 
The channel of hidden layers for denoiser is 64. The real and imaginary part of com-

plex values are stacked along the channel dimension in the denoiser. The network is 
trained for 2000 epochs using the Adam optimizer [11], a batch size of 32, a learning 
rate of 0.01, and Mean Squared Error (MSE) as the loss function. Gradient Clip is used 
for avoiding exploding gradient with threshold of 0.01. During inference, dropout lay-
ers in the denoiser remain active for sampling. The dropout rate is tuned to 0.3 from the 
range [0.2, 0.3, 0.4]. We perform 100 Monte Carlo samples to generate the mean re-
construction and the standard deviation as an uncertainty measure. 

2.2 Phase-wise uncertainty guided fitting 

To better utilize the uncertainty information from the reconstruction stage, parameter 
fitting in PUQ is performed pixel by pixel. For each pixel, the available inputs include 
the signal along the phase dimension and the corresponding uncertainty. The qMRI 
parameter fitting task can be regarded as a nonlinear regression problem. In classical 
linear regression, if the uncertainty at different measurement points is known, the opti-
mal solution is given by a weighted least squares approach [23]. In our case, the optimal 
solution is obtained through learning. A MLP with five fully connected layers and 
ReLU activations is used to fit the signal to the expected tissue parameter (T1 or T2 
relaxation time in our experiments). 

The MLP has 64 hidden units per layer and is trained for 200 epochs using the Adam 
optimizer [11] with a learning rate of 0.001 and a batch size of 1024, without using any 
regularization or data augmentation techniques. Mean squared error (MSE) loss is used 
for optimization. During both training and inference, the signal and uncertainty values 
are normalized by the signal value at the first phase. 



 Guiding qMRI Recon with Phase-wise Uncertainty 5 

3 Experiments 

3.1 Dataset 

To evaluate the proposed method, T2 and T1 mapping data were acquired from 20 
healthy human subjects using a 3.0 T scanner (Ingenia CX, Philips Healthcare) with a 
32-channel head coil. For T2 mapping, a 2D Turbo Field Echo (TFE) sequence with 
multiple T2 preparation pulses was used, where the T2 preparation time is referred to 
as TEprep. The imaging parameters were: TR = 2.8 ms, TE = 1.42 ms, TEpreps = [0, 
25, 35, 45, 65, 85, 105, 125] ms, FA = 35°, bandwidth = 1085 Hz/pixel, field of view 
(FOV) = 200 × 200 mm², image matrix = 160 × 160, slice thickness = 8 mm, and 20 
slices. For T1 mapping, a MOLLI [16] sequence with eight inversion time (TI) points 
was used. The scan parameters were: TR = 2.8 ms, TE = 1.39 ms, TIs = [251, 400, 
1251, 1400, 2251, 2400, 3251, 4251] ms, FA = 20°, bandwidth = 1085 Hz/pixel, FOV 
= 200 × 200 mm², image matrix = 160 × 160, slice thickness = 8 mm, and 20 slices. 

In total, the T2 and T1 datasets contain 400 image slices, split into 280/60/60 for 
training, validation, and testing. All images were compressed to eight coils, with coil 
sensitivity estimated using ESPIRiT [24]. The ground truth parameter mappings were 
obtained using direct least squares fitting of signal evolution. The images were then 
retrospectively undersampled using a 1D Cartesian random pattern with varying accel-
eration factors. 

3.2 Evaluation 

We compared the proposed PUQ with three existing qMRI reconstruction methods 
[9,10,12]: MANTS [12] and Dopamine [10], which use a one-step approach for recon-
struction and parameter fitting, and DeepT1 [9], which follows a two-step framework 
similar to PUQ. To quantitatively assess the effectiveness of parameter map 

Table 1. Quantitative results on T2 and T1 datasets under different acceleration rates. 

 Methods 
6× 8× 10× 

NRMSE SSIM NRMSE SSIM NRMSE SSIM 

T2 
MANTIS [12] 0.4025 0.9293 0.4198 0.9255 0.4292 0.9203 
Dopamine [10] 0.3944 0.9364 0.4181 0.9273 0.4253 0.9259 
DeepT1 [9] 0.3173 0.9584 0.3476 0.9493 0.3589 0.9448 
PUQ (ours) 0.2798 0.9694 0.3128 0.9607 0.3291 0.9563 
w/o G 0.2874 0.9681 0.3151 0.9605 0.3348 0.9554 

T1 
MANTIS [12] 0.1333 0.9472 0.1609 0.9258 0.1768 0.9148 
Dopamine [10] 0.1642 0.9322 0.1699 0.9224 0.1854 0.9084 
DeepT1 [9] 0.0588 0.9839 0.0844 0.9701 0.1047 0.9566 
PUQ (ours) 0.0475 0.9893 0.0739 0.9769 0.0932 0.9650 
w/o G 0.0481 0.9891 0.0748 0.9764 0.0938 0.9645 
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reconstruction, we compared the normalized root mean square error (NRMSE) and 
structural similarity (SSIM) values. All reconstruction methods were implemented in 
PyTorch on an Ubuntu 20.04 LTS system with eight NVIDIA A800 GPUs (80 GB 
each). 

3.3 Results 

First, we compared PUQ with the other methods and a version of PUQ without uncer-
tainty guidance (denoted as w/o G) on the T1 and T2 datasets. A 1D Cartesian under-
sampling pattern was used, with acceleration rates of [6, 8, 10]. The Auto-Calibration 
Signal (ACS) area was set to 0.06 for acceleration rates of 6 and 8, and 0.08 for 10. 

 
Fig. 3. Visual comparison with color bars and error maps on the T2 and T1 dataset. The NRMSE 
and SSIM of the example are shown in the top of reconstructed parameter mappings. 

The quantitative results are presented in Table 1. In both T1 and T2 datasets, PUQ 
achieved the best NRMSE and SSIM across all acceleration rates compared to the three 
other methods. Compared to its w/o G variant, PUQ consistently improved SSIM while 
slightly increasing NRMSE across all acceleration rates. We also observed that the two-
stage method, DeepT1, outperformed the one-stage methods, MANTS and Dopamine, 
likely due to the reduced complexity offered by the two-stage design. The qualitative 
results are shown in Fig. 3, where, due to space constraints, only the 6× acceleration 
example is displayed. For both T1 and T2 datasets, PUQ estimated parameter maps 
with the lowest residual error. In the T2 example, PUQ effectively distinguished white 
and gray matter, while in the T1 example, it more accurately recovered tissue border 

GT MANTIS Dopamine DeepT1 PUQ w/o G PUQ

T2

T1
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regions with varying T1 values. Across different acceleration rates, the proposed PUQ 
achieved the highest performance among existing methods, with uncertainty guidance 
showing effectiveness for T2 and T1 mapping. The average inference time per image 
(ms) for each method is as follows: MANTIS: 5.43; Dopamine: 174.85; Deep T1: 
122.64; PUQ: 2386.7. The longer inference time for PUQ is attributed to the use of 100 
Monte Carlo samples. 

In PUQ, uncertainty in the reconstruction stage is measured using MC Dropout, 
which inherently influences reconstruction performance. We thus examined the effects 
of dropout rate and sampling times as hyperparameters in MC Dropout. The experi-
ments in both T2 and T1 dataset were performed. 

 
Fig. 4. Results with different hyper-parameter of MC Dropout, containing sampling times Drop-
out rate for T2 (A,B) and T1 (C,D). The dashed line represents the result without Dropout. 

The results are shown in Fig. 4. As seen in Fig. 4 (A, C), we explored sampling times 
of [10, 20, 50, 100, 200]. Increasing the number of samples generally reduced NRMSE 
for methods without uncertainty guidance. This could be due to averaging sufficiently 
eliminating random errors. Notably, across nearly all sampling times, PUQ (w/ G) con-
sistently achieved lower errors than its unguided counterpart, demonstrating the effec-
tiveness of MC Dropout-based uncertainty measurement. The Failure in T1 dataset 
could be attributed to the randomness in low sampling numbers. Fig. 4 (B, D) presents 
results for dropout rates of [0.2, 0.3, 0.4]. Higher dropout rates led to decreased perfor-
mance. However, uncertainty guidance remained effective across different dropout 
rates, consistently improving performance. 

A. B.

C. D.
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3.4 Ablation Study. 

To assess the effectiveness of phase-wise uncertainty guidance, we compared the model 
without uncertainty guidance (“w/o G”) and the model without MC Dropout in the re-
construction stage (“w/o Dropout”). This ablation study was conducted using a 1D Car-
tesian undersampling pattern at an 8× acceleration rate. Additionally, since MC Drop-
out relies on sampling approximation, model performance may be influenced by sam-
pling randomness. To account for this, we repeated each model's training and testing 
five times and reported the mean performance and standard deviation in Table 2. While 
improving baseline performance was not our primary goal, MC Dropout itself enhanced 
the reconstruction quality, likely due to reduced overfitting for the low-data regime of 
qMRI. Notably, the proposed method with uncertainty guidance achieved the lowest 
NRMSE and highest SSIM on average. The paired t-test between w/ G and w/o G 
yielded a p-value of 0.0079 for T1 and 0.098 for T2. Moreover, it consistently outper-
formed the version without guidance nearly in every repetition (not shown in the table), 
demonstrating the value of pixel-wise uncertainty for parameter mapping. 

Furthermore, we explored an alternative uncertainty measurement approach based 
on negative log-likelihood (NLL) [25] minimization, which is optimized via gradient 
descent to estimate the observation noise parameter of a heteroscedastic Gaussian dis-
tribution, serving as a measure of uncertainty. We examined its combination with MC 
Dropout [7], resulting in NLL+MD w/o G (without uncertainty guidance) and 
NLL+MD w/ G (with uncertainty guidance). We then evaluated NLL separately, where 
NLL w/ G denotes the version using NLL-based uncertainty for guidance, and NLL 
w/o G refers to the version without guidance. The results, presented in the lower part 
of Table 2, indicate that the uncertainty guidance from the NLL approach is effective. 
Whether combined with MC Dropout or not, the guided versions achieved lower 
NRMSE. It is widely accepted that the MC Dropout reflects epistemic uncertainty, 
while NLL-based uncertainty primarily captures aleatoric uncertainty. This experiment 
suggests that both types of loss encode valuable pixel-wise reliability information for 
improved fitting. However, integrating NLL loss itself significantly degraded perfor-
mance, likely due to its strong dependence on the predictive variance gradients [19]. 
This degradation outweighed the benefits of uncertainty guidance, making it unsuitable 
for qMRI reconstruction. 

Table 2. Ablation results on T2 and T1 datasets 

Methods 
T2 T1 

NRMSE SSIM NRMSE SSIM 

w/o Dropout 0.3304 ± 0.0643 0.9566 ± 0.0164 0.08138 ± 0.0117 0.9747 ± 0.0111 
w/o G 0.3175 ± 0.0640 0.9599 ± 0.0153 0.07618 ± 0.0113 0.9756 ± 0.0109 
Proposed 0.3125 ± 0.0623 0.9605 ± 0.0151 0.07569 ± 0.0115 0.9759 ± 0.0109 
 

NLL w/o G 0.3302 ± 0.0657 0.9571 ± 0.0161 0.08401 ± 0.0116 0.9744 ± 0.0109 
NLL w/ G 0.3279 ± 0.0643 0.9573 ± 0.0159 0.08365 ± 0.0115 0.9746 ± 0.0108  
NLL+MD w/o G 0.3306 ± 0.0627 0.9568 ± 0.0155 0.07886 ± 0.0109 0.9759 ± 0.0103 
NLL+MD w/ G 0.3240 ± 0.0597 0.9577 ± 0.0150 0.07759 ± 0.0109 0.9767 ± 0.0100 
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4 Conclusion 

In this work, we introduced the uncertainty-guided model PUQ for qMRI reconstruc-
tion. PUQ proposes a two-stage framework that uniquely leverages uncertainty infor-
mation to enhance parameter mapping performance. In comparisons with other qMRI 
reconstruction methods, PUQ achieved the best reconstruction metrics and enhanced 
the quality of estimated parameter mappings in T1 and T2 datasets.  

The uncertainty in PUQ is measured during the initial step of multi-phase image 
reconstruction. We use this uncertainty to better incorporate information from different 
phase channels for parameter estimation. Comparisons at various acceleration rates 
demonstrated the effectiveness of uncertainty guiding. Additionally, dropout, a widely 
used method in neural networks, also impacts performance. Our experiments show that 
across different dropout rates and sampling times, PUQ consistently provides stable 
performance improvements. The ablation study with repeated training and testing fur-
ther underscores the effectiveness of uncertainty for qMRI reconstruction. However, 
the proposed method has limitations in inference time due to the repeated Monte Carlo 
sampling. 

We believe that the proposed PUQ has significant potential for broader applications 
that could utilize uncertainty information, such as MR fingerprinting, where incorpora-
tion of data from multiple phases is also required. The uncertainty from different phases 
reflects the reliability of each phase, facilitating better information fusion. 
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