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Abstract. 3D blood vessel segmentation remains a critical yet challenging task
in medical image analysis. The heterogeneity of clinical imaging protocols
introduces substantial domain gaps, limiting the generalizability of supervised
learning methods that rely on manually annotated pixel-level labels for
individual datasets. Furthermore, the large labeled volumetric datasets are
difficult to collect because of data privacy issues. While diffusion models offer
potential solutions by generating shareable synthetic data, existing approaches
often exhibit poor alignment between synthesized volumes and their
corresponding vascular structure input. To address these limitations, we
propose Controllable Adversarial Diffusion Model (AVDM), which
integrates adversarial supervision into the diffusion training framework. Unlike
conventional methods that generate imperceptible perturbations, AVDM
synthesizes adversarial instances emphasizing structural variations critical for
volume synthesis. Specifically, we design a segmentation-guided discriminator
that enforces both the photorealism of generated volumes and pixel-level
consistency with original vessel annotations. This supervision mechanism
enables high-resolution synthesis of anatomically plausible vascular structures.
Experiments demonstrate that AVDM surpasses state-of-the-art methods in
generative fidelity and enhances performance on downstream tasks. Our code is
available at https://github.com/jdai22/AVDM.
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1 Introduction

Blood vessel segmentation is a vital task in medical image analysis, particularly for
vascular disorders like stroke [1], cerebral aneurysms [2], and coronary disease [3],
where it plays a crucial role in diagnosis and treatment. Despite advances in medical
image analysis, accurate and robust segmentation of fully-connected vasculature in
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task-specific imaging modalities remains a challenging problem. This is primarily due
to the complexity introduced by intricate minuscule vascular geometries, as well as
significant domain gaps caused by imaging modality and protocol-specific variations
in signal-to-noise ratios, vascular pattern, and background tissues. These variations
severely restrict the ability of supervised learning methods to generalize unseen 3D
blood vessel domains [4]. Consequently, researchers and clinicians rely on the
labor-intensive process of manually annotating pixel-level consistent labels from
scratch to analyze vascular images.

Recently, generative models such as Generative Adversarial Networks (GANs) [5]
and Denoising Diffusion Probabilistic Models (DDPMs) [6] have been widely applied
to synthesize medical images, primarily due to the limited availability of real images.
Generating an image from a mask is a type of image-to-image translation work [7].
However, Existing standard models fail to directly generate precise 3D volumes with
corresponding vessel masks. When adopting powerful large pre-trained latent
diffusion models (LDMs) [8] for vessel-to-volume synthesis, the fine-tuning model
exhibits a domain shift from real-world noise due to the loss of mask controllability
without considering the characteristics and heterogeneity geometric structure of the
blood vessel. Consequently, the model can only generate samples similar or
duplicates of the existing training set, thus adversely impacting its utility for potential
downstream tasks requiring diverse data. Since annotated data only partially reflect
real-world environments, synthetic samples are designed to complement real data by
providing additional diversity.

Adversarial examples [9] mitigate the noise prediction errors due to poor alignment
with condition input. In this context, we propose Controllable Adversarial Diffusion
Modeling (AVDM), which introduces constrained adversarial supervision into the
diffusion training process. We map images to a low-dimensional latent manifold [10]
and shift them along gradient-optimized directions to generate adversarial examples
with high structural fidelity and domain adaptability. To preserve texture and
structural consistency with the original vessel during back-mapping, we use a
semantic segmentation-based discriminator [11] that leverages conditional
information for pixel-wise feedback to the diffusion model [12]. This integration
ensures that the adversarial examples are realistically aligned and accurately
correspond to their original mask labels.

We present AVDM, a diffusion-based framework for generating high-fidelity
volumetric images conditioned on vessel mask inputs. This model represents a
significant advancement in mask-conditional medical image generation, achieving
anatomical precision while preserving realism. We evaluate AVDM performance
across various datasets, demonstrating that it surpasses state-of-the-art
mask-conditional generative models in fidelity to input anatomical masks.
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2 Method

2.1 Projecting Volumetric to Diffusion Latent

To generate adversarial examples capable of addressing domain shifts across diverse
domains, we leverage generative models like Stable Diffusion to project volumetric
images into a low-dimensional manifold. By optimizing within this manifold space,
we efficiently identify adversarial latent representations that are reprojected into the
image space to synthesize consistent and diverse adversarial samples. Given an input
volumetric image �0 , we employ diffusion inversion to map it to low-dimension
latent space. The inversion utilizes a schedule {�1, …, ��} ∈ (0,1), within �� =

�=1
� (� 1 - ��) , where t represents the time steps. Specifically, we follow a forward

diffusion procedure as follows:

��+1 = ��+1
��

�� + 1
��+1

− 1 − 1
��−1

⋅ �� ��, �, � (1)

Our framework operates along the reverse direction of the denoising process (i.e.,
�0 → �� rather than �� → �0) . Instead of progressively denoising from random
noise to a clean image (forward process �(��|��−1)), we project the input image �0
into the latent space at a specific time point �� via diffusion inversion.

The classifier-free guidance method [13] generates unconditional predictions and
seamlessly merge them with predictions that are conditioned on specific inputs.
Giving the guidance scale factor � and null text embedding ∅ , the classifier-free
guided noise prediction at timestamp t is computed as:

��� ��, �, �, ∅ = � ⋅ �� ��, �, � + 1 − � ⋅ �� ��, �, ∅ (2)

Fig. 1. The architecture of our proposed AVDM framework. In the first step, we project the
input volume into the latent space and then optimized the latent space via adversarial
discriminator supervision. In the second step, we use the optimized latent to generate
adversarial samples controlled by input vessel masks.
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� = 7.5 is adopted as the standard setting for Stable Diffusion. In the reverse process
of DDIM sampling, classifier-free guidance causing deviation from the learned noise
distribution and generates visual anomalies that can diminish the realism of the
output. To mitigate these limitations, we learn time-dependent null embeddings ∅�=1

�

to preserve both distributional consistency and anatomical fidelity. Initially, executing
the DDIM inverse sampling process with � = 1 yields a series of successive latent
representations {�0

∗ , . . . , ��
∗ } , starting with �0

∗ = �0. Subsequently we embark on an
optimization process for the timesteps � = {�, . . . , 1},employing � = 7.5 and setting
��� = ��

∗ :

∅�
���||��−1

∗ − ��−1 �� �, �, �, ∅� ||2
2 (3)

For ease of understanding, let �� − 1 �� �, �, �, ∅� denote the DDIM sampling step,
where �� � serves as the input latent, ∅� as the null text embedding, and � is the text
embedding. Upon finishing each step, �� �−1 is updated in accordance with the
equation:

�� �−1 = ��−1 �� �, �, �, ∅� (4)

Finally, we can achieve the latent representation ��� = ��
∗ with the optimized null

text embedding ∅� generated by the diffusion model. We exploit this latent in the
low dimensional manifold to generate adversarial images.

2.2 Discriminator Supervision with Segmentation Alignment Process

Build upon the latent representation, we formalize the denoising process of our
diffusion model as follow, A U-Net denoise �� is trained to estimate the additive
noise through mean squared error (MSE) objective:

ℒ����� = ��∼� 0,� ,�,� � − �� ��, �, � 2 = ��,�0,�,� � − �� ���0 + 1 − ���, � 2 (5)

Besides the noisy image �� and the time step �, the UNet takes the vessel input � as
an additional input. Since � contains the blood vessel information derived from the
original image �0 , it simplify the noise estimation and then implicitly guides the
image synthesis during the denoising step. From �� and the noise prediction �� ,we
can generate a denoised version of the clean image ��0

� as:

��0
� = ��− 1−���� ��,�,�

��
(6)

However, the absence of explicit supervision for layout fidelity in the training
objective ℒnoise often leads to misalignment between generative images ��0

� and
structural conditions �. Thus we seek direct supervision on ��0

� to enforce the layout
alignment. To encourage diversity in addition to alignment, we make the segmenter
trainable along with the UNet training. Inspired by, we formulate an adversarial game
between the UNet and the segmenter. Specifically, the segmenter acts as a
discriminator that is trained to classify per-pixel class labels of real images, using the
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paired ground-truth label maps. Meanwhile, the discriminator classifies the fake
images generated by the UNet as an additional ‘fake’ class. Since the primary task of
the discriminator is to perform semantic segmentation, its training objective is based
on the standard cross-entropy loss

���� =− � �=1
� ��� �,�

��×� ��,�,�� ��� ��� �0 �,�� − � �,�
��×� ���� ��� ��0

�
�,�,�=�+1

(7)

2.3 Image Generation with Controllable Adversarial

After deriving an adversarial latent representation, a reverse diffusion process can be
applied to generate the final adversarial examples. We gain enhanced spatial shaping
capabilities by incorporating ControlNet [14] into this reverse process. ControlNet
improves the precision of task-specific conditioning within the denoising U-Net
architecture of the Stable Diffusion model. The Stable Diffusion model is built around
a U-Net framework, consisting of an encoder, a middle block, and a decoder, with
each segment comprising 12 blocks. ControlNet augments this structure by creating a
trainable copy of the 12 encoder blocks and the middle block from the original model.
These blocks are distributed across four resolution levels, with three blocks per level.
The outputs of these trainable blocks are then seamlessly integrated into the 12 skip
connections and the middle block of the diffusion U-Net. This integration
significantly enhances the model's ability to refine and tailor image characteristics
with greater accuracy.

3 Experiments

We conducted experiments on publicly available 3D blood vessel datasets to
synthesize data. The dataset consists of 127 TOF-MRA volumes collected from three
distinct data centers: ADAM [15], CoW [16], and IXI-HH [17]. These datasets exhibit
substantial diversity, particularly regarding acquisition devices, scanning protocols,
magnetic field strengths, and spatial resolutions. Additionally, we evaluated zero-shot,
one-shot, and few-shot segmentation tasks as downstream applications, utilizing three
unseen 3D blood vessel datasets: IXI-Guys[17], ICBM [18] and LocH [19]. In this

Table 1. Quantitative results on synthetic data.

Method ADAM CoW IXI-HH
FID↓ MMD↓ FID↓ MMD↓ FID↓ MMD↓

HA-GAN 23.79 0.29 17.01 0.20 18.16 0.24
WGAN 22.03 0.26 16.08 0.18 17.40 0.20
WDM 17.75 0.22 15.58 0.16 15.17 0.17
MAISI 15.38 0.17 13.85 0.13 14.56 0.14
Ours 13.95 0.14 10.63 0.11 12.26 0.09
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context, 3D patches of size 1283 were extracted from the whole brain scans. We
employ a vessel-density-driven approach, where patches are selected based on the
presence of vascular structures identified in ground-truth vessel masks. A sliding
window algorithm scans the 3D volume, prioritizing regions with high vessel density
(computed as the proportion of vessel voxels within a patch). For each patient, we
select the 50 patches ranked by vessel density, ensuring at least 20% vessel coverage
per patch to balance representation and diversity. For the adversarial example
generation process, we configured the DDIM (Denoising Diffusion Implicit Models)
with T=100 steps.

3.1 Baseline & Evaluation

To validate the effectiveness of our proposed method, we compared it against several
generative approaches serving benchmarks. HA-GAN [20], a hierarchical amortized
GAN, simultaneously generates high-resolution volumes to mitigate memory
constraints. WGAN [21] generates high-resolution volumes along with labels in an
end-to-end paradigm. WDM [22] is a diffusion-based framework for medical image
synthesis that leverages wavelet-decomposed images. MAISI [23] employs a 3D
U-Net trained in the latent space of a 3D VAE. We evaluated performance using the

Table 2. Quantitative results for 3D blood vessel segmentation on three tasks: zero, one
and few-shot.

Task Method
IXI-Guys ICBM LocH

Dice↑ clDice
↑

Dice↑ clDice↑ Dice↑ clDice↑

Zero-shot

HA-GAN 46.63 43.32 39.33 37.88 26.60 24.65
WGAN 48.76 46.89 42.28 40.68 27.07 25.64
WDM 53.15 51.87 46.11 43.79 32.53 30.07
MAISI 56.33 54.15 50.83 48.29 35.66 34.10
Ours 58.15 56.72 52.11 51.45 44.95 40.91

O
ne-shot

HA-GAN 65.69 64.56 57.78 55.24 46.93 44.45
WGAN 67.60 63.05 59.78 57.83 47.13 45.59
WDM 70.27 68.06 62.16 58.36 51.72 48.29
MAISI 72.11 70.89 65.96 63.43 54.60 52.08
Ours 74.84 73.16 69.18 67.99 57.70 56.19

Few
-shot

HA-GAN 73.04 71.08 68.15 66.90 63.90 61.78
WGAN 75.80 73.57 69.83 67.28 65.16 63.73
WDM 79.97 76.91 72.55 69.74 68.15 66.53
MAISI 81.93 78.44 74.09 73.33 72.89 71.19
Ours 83.86 81.47 76.57 75.38 74.60 73.60
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Fréchet Inception Distance (FID) and Maximum Mean Discrepancy (MMD) to
measure the similarity between the distributions of real and generated images.
Additionally, for downstream blood vessel segmentation tasks, we employed the Dice
coefficient (Dice) to assess segmentation accuracy and the topology-aware centerline
Dice (clDice) to evaluate the preservation of tubular structure and vascular
connectivity.

3.2 Quantitative and Qualitative Results

Quantitative comparisons are summarized in Table 1. We evaluated generative quality
using the FID for feature-level realism and MMD for distribution similarity. Our
method achieves state-of-the-art performance with FID and MMD scores of 12.28 and
0.24, respectively, representing a 2.67 reducing in FID (from 14.95 to 12.28) and 0.03
reducing (from 0.14 to 0.11) in MMD compared to the second-best method MAISI
[23]. This demonstrates that our adversarial samples are more realistic reconstructed
from a well-optimized gradient guided by the adversarial supervision and highlight a
significant improvement in generative fidelity, as shown in Figure 2. Furthermore,
conventional approaches like HA-GAN [20] and WGAN [21] show degraded
performance across all metrics (FID > 16.16, MMD > 0.18), highlighting their
inherent limitations in modeling the complex intensity distributions and geometric
constraints of medical volumetric data.

As shown in Table 2, we systematically asses the downstream segmentation
performance of our synthesis approach across three distinct tasks: zero-shot, one-shot,
and few-shot segmentation. Across all experiments, we adopt the nn-Unet [24]
framework as a segmentation backbone to ensure standardized comparisons. Our
method demonstrates exceptional zero-shot generalizability, achieving average Dice
and clDice scores of 51.7% and 49.6% across three diverse unseen domains. Notably,
our method outperforms MAISI [23] by 4.1 Dice and 3.9 clDice points, highlighting
the effectiveness of our vessel morphology-aware inductive bias derived from
high-fidelity synthetic training data. When adapted to one-shot and few-shot settings
through fine-tuning, the proposed method further improves segmentation accuracy by
15.54 and 26.64 Dice points, respectively compared to its zero-shot baseline. This
demonstrates the critical role of our synthesized vascular patterns in enhancing
downstream tasks.

Fig. 2. Qualitative results on volume Fig. 3. Qualitative results on 3D vessel segmentation.
generation corresponding 3D vessel.
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3.3 Ablation Studies

Main components. Table 3 show that performance significantly declines when latent
projection is employed without Latent Optimization. This is primarily due to the lack
of supervision, which prevents the projection from aligning with the model’s learned
patterns. Additionally, using only latent projection followed by reconstruction with
ControlNet results in suboptimal performance, as this approach fails to incorporate
model-specific insights in the projection process. In contrast, combining Latent
Optimization and ControalNet achieves the best segmentation results.
Discriminator Ablation. We performed an ablation study to evaluate different
discriminator designs, with results presented in Table 4. We explored two options: a
CNN-based network [25] and a transformer-based network [26] — both of which
enhance the fidelity of the baseline model. Additionally, rather than applying the
discriminator solely in pixel space, we investigated a feature-space discriminator,
which also demonstrated satisfactory performance.

4 Conclusion

In this work, we propose AVDM, a novel framework that integrates adversarial
supervision into a diffusion model to improve the faithfulness of vessel-to-volume
synthesis. By leveraging a segmenter-based discriminator, we explicitly enforce
morphological consistency with original vessel annotations through adversarial
supervision, addressing the limitations of existing diffusion models that often fail to
align synthesized volumes with vascular structure inputs. Our experiments
demonstrates that ADVM achieves superior generative performance and enhance the
downstream application.

Table 3. Ablation studies of main componen.

Latent
Projection

Latent
Optimization

Controllable
Generation

Dice↑
IXI-Guys ICBM LocH

√ 80.53 73.32 71.06
√ √ 81.16 74.86 72.84
√ √ 82.21 75.29 73.94
√ √ √ 83.86 76.57 74.60

Table 4. Ablation on the discriminator type.

Method FID↓
ADAM CoW IXI-HH

+ CNN-based UperNet 16.99 13.99 15.68
+ Transformer-based Segmenter 14.86 12.08 14.11
+ Feature-based 13.95 10.63 12.26
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