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Abstract. The Segment Anything Model 2 (SAM-2) has shown im-
pressive capabilities for promptable segmentation in images and videos.
However, SAM-2 primarily operates on visual prompts including points,
boxes, and masks, which does not natively support text prompts. This
limitation is particularly noticeable in medical imaging, where domain-
specific textual descriptions are often beneficial for annotating subtle
abnormalities and identifying regions of interest. In this paper, we intro-
duce Text-Guided SAM-2 (TGSAM-2), a medical image segmentation
model tailored to leverage text prompts as contextual guidance. We pro-
pose a text-conditioned visual perception module that conditions visual
features on textual descriptions, and refine the memory encoder to track
target objects using medical text prompts. We evaluate our method on
four medical image datasets with video-like characteristics, including 2D
image sequences (e.g. Endoscopy, Ultrasound) and 3D volumes (e.g. CT,
MRI). Experimental results demonstrate that our method outperforms
state-of-the-art models, including both image-only and text-guided med-
ical image segmentation methods.

Keywords: Text-prompted medical image segmentation · Segment any-
thing model 2.

1 Introduction

The Segment Anything Model (SAM) [10] has revolutionized image segmentation
by introducing a promptable framework, which supports interactive segmenta-
tion using visual prompts such as points, bounding boxes, and mask inputs.
SAM-2 [13] advances the architecture with a streaming memory that stores pre-
vious prompts and predictions, enabling it to segment anything in images and
videos. Several works [12,16,20] have introduced SAM series into the medical
image segmentation domain. For example, MedSAM-2 [20] leverages the SAM-2
pipeline and designs a self-sorting memory bank for pseudo-video data consisting
of 2D images without temporal order.
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The left ventricle is an 
elongated, oval chamber 
responsible for pumping 
oxygenated …

Myocardium is muscular 
tissue of the heart, appears  
darker medium gray… 

The left atrium is a round 
or oval blood-filled 
chamber that appears as a 
dark region…

Unified image streams

Frames

Slices

time

3D volumes (CT, MRI)

Videos (Ultrasound, Endoscopy)

Fig. 1. Medical image segmentation using SAM-2. (a) Video-like medical images are
processed into unified image streams. (b) While vanilla SAM-2 supports visual prompts,
our approach incorporates text prompts for enhanced semantic understanding.

However, despite their versatility, the SAM series lack the ability to incorpo-
rate textual semantic prompts, which limits their application in scenarios requir-
ing nuanced contextual understanding. Previous methods [11,18,4] have proved
that text prompts are beneficial for improving segmentation performance via
multi-modal interaction. Therefore, improving SAM-2’s ability to interpret med-
ical text prompts remains a challenge, as shown in Fig. 1 (b).

To address this gap, we propose a novel framework for Text-Guided medical
image segmentation using Segment Anything Model 2 (TGSAM-2). Medical
imaging modalities, such as videos (e.g., ultrasound and endoscopy) and 3D vol-
umes (e.g., CT and MRI), share video-like properties, making them well-suited
for SAM-2. These data types exhibit temporal or spatial continuity, where con-
secutive frames in a video or adjacent slices in a 3D volume are highly correlated,
and can be processed into unified image streams, as shown in Fig. 1 (a).

Ultrasound and endoscopy data capture dynamic changes of anatomical struc-
tures or probe movements in real time. Similarly, sequential slices in CT and
MRI scans can be treated as frames, in which organs maintain consistent spa-
tial relationships but exhibit varying appearances across the entire volume. To
continuously refer to target objects, we leverage text prompts that describe key
attributes such as the relative position, rough color, and shape of target organs or
lesions, which remain stable over time. We design a Text-Conditioned Visual
Perception (TCVP) module to condition visual features on text prompts,
along with a Text-Tracking Memory Encoder (TTME) to focus on target
objects under textual guidance, thus enhancing memory retention. Our contri-
butions are summarized as follows:

– We extend the SAM-2 architecture to integrate semantic understanding
through text embedding, enabling text-prompted segmentation for medical
images via Text-Conditioned Visual Perception.

– We propose a Text-Tracking Memory Encoder to ensure consistent target
tracking across frames in dynamic medical imaging scenarios.

– We evaluate our method on diverse medical image datasets, demonstrating
significant improvements over existing methods.
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Fig. 2. Overview of TGSAM-2. Text-conditioned visual perception (TCVP) conditions
visual features on text embeddings, and Text-tracking memory encoder (TTME) en-
sures continuous tracking of target objects under guidance of the provided text.

2 Method

The overall architecture of our TGSAM-2 is shown in Fig. 2. Given T frames
{It ∈ R3×H×W }Tt=1 from a video or volume, and their corresponding text prompt
P , the model aims to predict binary mask outputs Y = {ŷt ∈ RH×W }Tt=1 for each
object. To explain how we enhance SAM-2 with textual semantic understanding
for video-like medical images, we first introduce some preliminaries and describe
the process of prompting SAM-2 with medical text prompts in Section 2.1. We
then discuss the role of text in guiding visual perception in Section 2.2. Finally, to
maintain consistent tracking of the target object, we propose a refined memory
encoder that incorporates textual features, as detailed in Section 2.3.

2.1 Overview

Preliminaries of the Segment Anything Model 2 (SAM-2) SAM-2 con-
sists of an image encoder Eimage, a prompt encoder Eprompt, and a mask decoder
D. In addition, a memory attention A, a memory encoder Ememory, and a mem-
ory bank which stores memories M are introduced to enable video processing.

The image encoder Eimage is an MAE [7] pre-trained Hiera [14], which is
hierarchical to extract multi-scale features F . The memory attention module A
is a stack of transformer blocks that takes the current frame features and attends
to the historical features M stored in the memory bank. The prompt encoder
Eprompt takes visual prompts Pt (points, boxes, or masks) as input and outputs
the prompt embedding Eprompt(Pt).

The mask decoder D gets Eprompt(Pt) from the prompt encoder and frame
embeddings after memory attention A, and predicts a binary mask ŷt:

ŷt = D (A (Eimage(It),M) , Eprompt(Pt)) (1)
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The output mask ŷt is downsampled and fed into the memory encoder Ememory

with the original frame features Eimage(It) to generate a memory. The memory
bank retains memories of the past K frames for the target object in the video:

M = {Ememory(ŷt, Eimage(It))}tt−K+1 (2)

Prompting SAM-2 with Text To inject textual semantics into SAM-2, we
adopt a text encoder Etext to extract textual features T ∈ RL×C from the text
prompt consisting of L words. In the prompt encoder Eprompt, these features
T are linearly projected using a learnable projection layer Tproj = W · T , W ∈
RC×D, and then token-level information is aggregated into Tembed ∈ RL×D via
attention-based integration, which is formulated as:

Tembed = Softmax

(
WQTproj · (WKTproj)⊤√

D

)
· Tproj (3)

We consider text as a type of sparse prompts like points and boxes, thus Tembed

will be summed with positional encodings and fed into the mask decoder D.

2.2 Text-conditioned Visual Perception (TCVP)

The text encoder Etext extracts textual features T , and the image encoder
Eimage extracts multi-scale features F = {fi ∈ RCi×Hi×Wi}Ni=1, where Ci, Hi

and Wi denote the channel dimension, height, and width of the feature map at
the ith level, respectively, and N is the number of feature levels. TCVP is a
multi-modal feature fusion mechanism designed to enhance visual understand-
ing under textual guidance. This module leverages multi-head cross attention to
align and integrate textual features with multi-scale visual features, enabling the
model to adaptively highlight contextually relevant regions based on semantic
cues from the text. As shown in Fig. 3 (a), the process can be formulated as:

fN += MHCA(T , fN )

fN−1 += Act(DeConv(fN )), fN−2 += DeConv(fN−1)
(4)

where MHCA(·) represents multi-head cross attention, with textual features T
as query, and visual features of the last level fN as key and value. DeConv(·)
is a transposed convolutional layer, and Act(·) denotes the GELU activation
function. Through multi-modal interaction and hierarchical feature integration,
TCVP enables SAM-2 to obtain context-aware visual features for subsequent
memory attention, seamlessly bridging the gap between language and vision.

2.3 Text-tracking Memory Encoder (TTME)

In medical videos, visual cues alone are often insufficient for tracking objects
due to low contrast and blurry boundaries. Therefore, we design a Text-Tracking
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Fig. 3. Schematizations of (a) TCVP and (b) TTME.

Memory Encoder to enhance target tracking performance by incorporating tex-
tual information alongside visual features, as illustrated in Fig. 3 (b). Initially,
the memory encoder Ememory relies on the last level of previous frames’ visual
features fN and associated masks ŷ. Taking a previous frame Is as an example,
its predicted mask ŷs is downsampled through several convolutional layers:

ŷ′s = Act(LN(Conv(ŷs))), repeat p times (5)

Then the downsampled mask ŷ′s is added to the visual features fN,s, i.e., f ′
N,s =

Conv(ŷ′s) + fN,s. We introduce textual features T as an additional input to our
TTME for tracking objects over time. The memory feature of Is is computed as:

Ms = Act(PwConv(LN(DwConv(f ′
N,s))) +WT ), repeat q times (6)

where LN(·) denotes layer normalization, W represents a learnable projection
layer, DwConv(·) and PwConv(·) denote depth-wise and point-wise convolu-
tions, respectively. DwConv(·) remains the channel dimension unchanged, while
PwConv(·) maps features into different channels using 1× 1 kernels. By adjust-
ing the memory updates with the text, the model is able to better differentiate
between objects and adapt to dynamic changes in the scene.

3 Experiments

3.1 Datasets and Metrics

We train and evaluate our model on four datasets of different modalities from
the Referring Medical Image Sequence Segmentation dataset [17], a large-scale
benchmark consisting of frames from video-based examinations and slices from
3D volumes, along with medical text prompts for each anatomical structure.
The four datasets are: 1) ACDC [3] (MRI), which contains 100 training and 50
testing volumes for segmenting left ventricle, right ventricle, and myocardium.
2) MSD Spleen segmentation dataset [1,15] (CT), comprising 30 training and
11 testing volumes. 3) Micro-Ultrasound Prostate Segmentation Dataset [9]
(ultrasound), containing 55 training and 20 testing videos. 4) CVC-ClinicDB [2]
(endoscopy), containing 18 training and 11 testing videos with polyps. The Dice
score (DSC) and Intersection over Union (IoU) are used as evaluation metrics.
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Table 1. Comparison results on ACDC, Spleen, Prostate, and CVC datasets. † denotes
the average of left ventricle, right ventricle, and myocardium.

Method
ACDC† Spleen Prostate CVC

DSC↑ IoU↑ DSC↑ IoU↑ DSC↑ IoU↑ DSC↑ IoU↑

Task-specific
UNet++ (TMI19) 83.25 75.24 77.88 64.60 85.65 80.59 72.46 62.43
nn-UNet (Nature21) 86.54 81.98 86.98 81.99 89.73 83.64 80.34 72.15
TransUNet (MIA24) 86.45 81.71 87.50 82.13 88.98 83.26 77.95 69.66

Text-guided
LViT (TMI24) 84.64 76.46 81.82 75.00 90.41 84.69 70.56 61.56
LanGuide (MICCAI23) 84.82 74.16 88.24 78.96 91.50 84.34 75.87 61.13
MMI-UNet (MICCAI24) 85.78 75.08 88.78 79.83 90.29 82.30 78.75 64.95

Interactive (point-prompted)
MedSAM (Nature24) 85.47 79.05 89.32 84.00 90.60 85.10 79.31 73.60
SAM-2 (ArXiv24) 84.29 78.84 85.15 79.10 88.69 83.38 83.60 76.58
MedSAM-2 (ArXiv24) 86.04 79.32 87.75 81.02 91.57 86.14 84.35 77.26

TGSAM-2 (Ours) 87.63 82.10 89.34 84.77 92.75 87.74 85.10 78.27

3.2 Implementation Details

We adopt the pretrained sam2_hiera_small model with 46M parameters as the
initial weights. Images are resized to 1024 × 1024. The size of memory bank
is set to 4. We use BiomedBERT [6] as the text encoder, which is pretrained
using abstracts from PubMed and full-text articles from PubMedCentral. The
channel dimension C of textual features is set to 256. The repeat times p and
q in text-tracking memory encoder are set to 4 and 2, respectively. Our model
is trained on an RTX 3090 24GB GPU, using Adam optimizer with an initial
learning rate of 1e-4. The learning rate decays by 0.5 every 10 epochs.

3.3 Main Results

Comparison with State-of-the-art Methods We compare our method with
previous state-of-the-art approaches, which can be categorized into three types:
1) Task-specific models, including UNet++ [19], TransUNet [5], and nn-UNet [8].
2) Text-guided models, including LViT [11], LanGuide [18], and MMI-UNet [4]. 3)
Interactive models using point prompts every 5 frames, including MedSAM [12],
SAM-2 [13], and MedSAM-2 [20]. We train separate models for each organ and
lesion, as shown in Table 1. Our method demonstrates superior performance
over other methods, indicating the effectiveness and generalization ability of
equipping SAM-2 with medical text prompts. We also visualize segmentation
predictions across different modalities in Fig. 4 (a)-(c).
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Table 2. Performance on ACDC dataset. specific: Models are trained on each cardiac
structures separately. universal: Models are trained on all three structures collectively.
♯: Model is prompted every 5 frame. ∗: Model is prompted every frame.

Method Prompt Type
Left Ven. Right Ven. Myocardium Average

DSC↑ IoU↑ DSC↑ IoU↑ DSC↑ IoU↑ DSC↑ IoU↑

UNet++ - specific 87.41 81.71 80.03 71.86 82.33 72.16 83.25 75.24
MedSAM-2♯ point specific 89.45 83.98 82.21 74.38 86.46 79.59 86.04 79.32
Ours text specific 91.57 87.14 85.28 79.95 86.05 79.22 87.63 82.10

MedSAM-2∗ point universal 81.38 73.73 75.20 67.94 36.37 28.21 64.32 56.63
Ours text universal 90.62 85.17 81.50 74.49 84.97 75.11 85.70 78.26

Semantic-aware Performance When multiple objects are present in a single
medical image, task-specific models are trained using class-specific masks, while
interactive models utilize class-agnostic points (clicks). Medical text prompts,
which carry semantic information, allow our method to distinguish between dif-
ferent objects. As shown in Table 2, we train a universal model on the ACDC
dataset solely using text prompts, achieving an average DSC of 85.70% and IoU
of 78.26%, which outperforms the universal MedSAM-2 model and is comparable
to task-specific MedSAM-2. Visualization results are shown in Fig. 4 (d)-(f).

3.4 Ablation Studies

Component Analysis To analyze the effectiveness of the Text-conditioned
Visual Perception (TCVP) and Text-tracking Memory Encoder (TTME), we
conduct ablation studies, as shown in Table 3. The TCVP and TTME compo-
nents improve the DSC by 2.75% and 2.18%, respectively, demonstrating that
medical text prompts can assist in feature extraction and object tracking.

Prompt Design Medical text prompts used in our experiments contain de-
scriptions of organs/lesions, including attributes such as definition, color, and
shape. We evaluate the impact of these prompts, as shown in Table 4. Without

Table 3. Ablation studies on TCVP and TTME.

TCVP TTME
ACDC Spleen Prostate CVC Average

DSC↑ IoU↑ DSC↑ IoU↑ DSC↑ IoU↑ DSC↑ IoU↑ DSC↑ IoU↑

- - 84.19 78.45 85.61 79.94 88.27 83.09 80.46 72.62 84.63 78.53
✓ - 86.87 81.81 87.78 82.83 91.08 85.77 83.79 78.21 87.38 82.16
- ✓ 86.12 81.09 87.20 82.11 90.85 85.45 83.05 77.80 86.81 81.61
✓ ✓ 87.63 82.10 89.34 84.77 92.75 87.74 85.10 78.27 88.71 83.22



8 R. Yuan et al.

Table 4. Ablation on prompt design.

Text prompt
Average

DSC↑ IoU↑

w/o text 84.63 78.53
class name 86.40 80.95
description 88.71 83.22

Table 5. Ablation on text-tracking.

Text-tracking
Average

DSC↑ IoU↑

multiplication 87.05 82.53
concatenation 85.14 79.88
summation 88.71 83.22

(a) The spleen typically has an oval or crescent-shaped structure.

(b) The prostate is a gland located below the bladder and 
surrounds the urethra.

(c) An abnormal growth of tissue in the colon or rectum. The 
color of a colorectal polyp is often pink, red, or tan.

(d) The left ventricle is often a round structure, 
responsible for pumping oxygenated blood.

(e) The right ventricle appears as a brighter region.

(f) The myocardium is a thick, continuous layer 
surrounding the heart chambers.

这幅图里主要微调了图形和文字框的位置。

Fig. 4. Visualization of text-guided segmentation results.

such prompts, the model achieves an average DSC of 84.63% and IoU of 78.53%.
Refining the prompts from simple class names to detailed descriptions improves
performance by 2.31% in DSC and 2.27% in IoU.

Text-tracking Strategy As mentioned in Section 2.3 Eq. (6), we perform
a summation of textual features with a combination of visual features and
predicted masks. We explore different strategies to integrate them, including
element-wise multiplication and channel-wise concatenation. Results in Table 5
show that summation outperforms both multiplication and concatenation, with
improvements of 1.66% and 3.57% in DSC, respectively.

4 Conclusion

In this work, we present TGSAM-2 that utilizes text prompts to enhance SAM-2
for medical image segmentation. Through the integration of Text-Conditioned
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Visual Perception and Text-Tracking Memory Encoder, our method demon-
strates improvements across diverse datasets with different modalities. Experi-
mental results emphasize the value of text prompts in medical imaging. In the
future, we plan to extend our framework to incorporate visual prompts and
unstructured non-visual cues, such as patient metadata and clinical history.
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