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Abstract. Weakly-supervised medical image segmentation with only
image-level annotation is particularly challenging to infer precise pixel-
wise predictions. Existing works are usually highly restricted by the as-
sumption that the medical images for training and testing are under
the same distribution. However, a robust weakly-supervised segmenta-
tion model needs to show accurate inference on medical images from
unseen distributions. Different feature distributions can lead to a dra-
matic shift in the feature activation and class activation map (CAM),
which in turn leads to the degradation of pseudo labels. In this paper,
we aim to learn generalizable weakly-supervised medical image segmen-
tation by focusing on enhancing the domain invariance for pseudo labels.
A novel domain-invariant CAM learning scheme (D-CAM) is proposed,
in which the content and style are decoupled during training. By inferring
domain-invariant pseudo labels, the supervision of a segmentation model
is more generalizable to different target domains. Extensive experiments
under multiple generalized medical image segmentation settings show the
state-of-the-art performance of our D-CAM. Source code is available at
https://github.com/JingjunYi/D-CAM.

Keywords: Domain Generalization - Medical Image Segmentation - Image-
level Weak Supervision.

1 Introduction

The pixel-wise annotation for medical images usually requires high-level exper-
tise knowledge and is more difficult to collect than natural images. Thus, weakly-
supervised image segmentation [3,23], which involves less expert labor to anno-
tate, demonstrates its necessity in the area of medical image analysis. Among a
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variety of weak supervisions, category label is the most challenging one, as there
is no pixel-level auxiliary annotations (e.g., points and line scribes); therefore,
the quality of the pseudo label is difficult to guarantee [2]. In the past few years,
great effort has been made in this field. The quality of pseudo labels from only
category-label supervision has been significantly improved [4,6,13,16,26,7], and
it has become practically and clinically flexible to be adapted under the medical
context such as histopathology images.

However, these algorithms usually assume that the medical images for train-
ing and for inference are under the independent and identical distribution (i.i.d.),
which is difficult to fulfill in realistic scenario. As the medical images can be col-
lected from different scanners and different hospitals, the imaging factors (e.g.,
contrast, color distribution, and resolution), which can be termed as style, may
greatly vary. Consequently, the so-called domain gap widely rests between the
source domain for training and the arbitrary unseen target domains for infer-
ence. From a machine learning perspective, domain generalization aims to en-
hance the generalization ability of a model to arbitrary unseen target domains
when only trained by the source domain [18,20,9,10]. Although domain gener-
alized medical image segmentation has been systematically studied in the past
few years [22,11,27,17,1], those works are under the fully-supervised paradigm,
where precise pixel-wise annotations are available for training. To the best of
our knowledge, learning domain generalized weakly-supervised medical image
segmentation with only category labels remains unexplored.

Domain generalized weakly-supervised medical image segmentation holds
unique challenges. Usually, image-level annotation based weakly-supervised seg-
mentation is a two-stage process. First stage: A classification network is trained
with image-level annotations and generates the pseudo segmentation label; Sec-
ond stage: The pseudo segmentation labels are further used to train a segmenta-
tion model. The second stage is crucial for refining coarse CAM-based masks into
accurate segmentation boundaries [7,16]Due to the limited accuracy of image-
level labels, the segmentation pseudo-labels generated in the first stage often
only cover the approximate regions of interest and fail to capture precise bound-
aries. Consequently, the segmentation model trained on these pseudo-labels is
prone to boundary errors. When there is a significant style difference between
the target domain and the source domain, these boundary errors are further
amplified, affecting the practical utility of the segmentation model. In practice,
when deploying the model to a new hospital, we can quickly collect a batch of
images from the target hospital. If the pseudo-label generation model from the
first stage has sufficient generalization capability, we can use it to generate seg-
mentation pseudo-labels for the target domain based on the collected images.
Subsequently, we can retrain the segmentation model using the target domain
images and pseudo-labels to enhance its performance in this specific domain.

In this paper, we aim to push the frontier of domain generalized weakly-
supervised medical image segmentation. Our objective is to allow the pseudo
labels generated in the first stage to be as robust as possible to unseen target
domains, so that the segmentation model can be retrained in the target domain
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with unlabeled images. To realize this objective, we turn to the frequency space,
where the style variation mainly reflects in the amplitude component and the
content information rests more in the phase component [17,12]. Removing the
style information contained in the amplitude component allows the reconstructed
spatial features to be more domain-invariant, thus the calculated class activation
maps (CAMs) can be used to generate pseudo labels for unseen target domains.
By decoupling the impacts of frequency components, the generation of pseudo
labels can be more robust to the cross-domain style variation.

Our contributions can be summarized as follows: i) We make an early explo-
ration to learn weakly-supervised medical image segmentation with image-level
annotations in source domain and unlabeled images in target domain; ii) To ad-
dress the key challenge that the cross-domain style variation degrades the quality
of pseudo segmentation labels, we propose a domain-invariant class activation
map (D-CAM) learning scheme; iii) It leverages the frequency space to decou-
ple the style and content information, and generate domain-invariant pseudo
segmentation labels for target domains; iv) Experiments on three pathological
image datasets under multiple cross-domain settings show its state-of-the-art
performance.

2 Methodology

Given a number of medical images x with category annotation y from N domains,
denoted as DK1) = {(x%Kl),yT(LKl)) fj:“f“, <o, DEN) = {(x%KN),y%KN)) ,fj:“f’v),
where DU refers to the dataset of the i-th domain and N(X9) denotes the
number of samples in that domain, the task of generalizable weakly-supervised
medical image segmentation is formulated as follows: In stage one, a classification
network f.s with parameters 6. is trained only on a source domain DED o
generate the dense pixel-level pseudo mask p, given by fcls(x%Kl), yg{l); Ocis) —
pE1) | In stage two, the segmentation model fseg is trained by the unlabeled

target domain training images x;K") and the corresponding pixel-level pseudo

masks p(5=) | generated by fcls(xglK"); 6.15) — pE»). Our objective is to achieve
robust cross-domain pseudo label generation based on the classification network
fes trained on source domain. Consequently, supervised by the pseudo label p,

the segmentation model f,.4 can perform stably on the test set of target domains
DE2) ... DEN),

2.1 Frequency Space Decoupling

To address the domain differences primarily reflected in style diversity, it is essen-
tial to decouple the style representation from the content representation before
further processing. From a frequency perspective, style information is typically
found in the amplitude component, whereas content information is generally lo-
cated in the phase component [15,25]. Thus, we first consider separating the style
and content from the frequency space. Given a certain medical image x, assume
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Fig.1. Overview of the proposed domain-invariant class activation map (D-CAM)
learning scheme for generalizable weakly-supervised medical image segmentation.

F,; is the corresponding feature map from the classification network f.s of the
it" block. We employ the Fast Fourier Transform (FFT) to map the feature F;
to the frequency space, given by

W H
Fi(u,v) = Z Z F;(w, h)e—jQW(wu/W+hv/H)7 (1)
w=1h=1
where H and W denote the height and width of the feature map, respectively.
Then, after transforming F;(u,v) into the polar coordinate, the phase P, and
amplitude A; components are computed as

Pi(u’v) = qS(u,v), Ai(uvv) = |]:i(ua ”U)| (2)

2.2 Domain-invariant Representation Constructing

Frequency space uncoupling is a preliminary step that helps us separate style
and content. However, how to obtain a domain-invariant feature representation
under cross-domain style variations requires further investigation. To address
this issue, we aim to learn a domain-invariant representation F,. Ideally, the
domain-invariant representation F; should contain the same content represen-
tation as F; does, while maintaining a consistent style representation across
domains. In contrast, F; contains rich style-related information that varies ac-
cording to the source. To obtain the domain-invariant representation F;, we
apply instance normalization, a commonly-used style decoupling operation, on
the original domain-specific representation F;. It is mathematically computed as

B e F(W~H),c _
B~ = Eoy+8, (3)

o+e
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where v, 3 € R® are affine transformation parameters that scale and shift the
normalized features, as described in instance normalization [19].

c c
1 (W-H),c 1 (W-H),c

— = N\ gl € o= | = F! © )2 4

I C; ; ;o C;:l( ; )2, (4)

where ¢ = 1,2, -+, C refers to the channel of the feature map. After that, the
normalized representation F; is processed using the FFT to obtain the phase
component P; and the amplitude component A; by Egs. 1 and 2. In comparison,
this amplitude component A; encapsulates style information that is intended to
be invariant to domain variation, based on the findings of prior works [15,25]
which suggest that amplitude reflects style. Then, we construct the domain in-
variant representation of medical image x by fusing its original phase component
P, and the domain-normalized amplitude component A;. This is implemented
by the Inverse Fast Fourier Transformation (IFFT), given by

F; = IFFT([P;, AJ) (5)

Here, instance normalization removes style noise, while FFT separates style and
content, making their combination effective for domain-invariant representation.

2.3 Domain-invariant CAM Generation

For the feature map F; (i = 1,2, 3,4) from each block of the classification network
fes, we apply Eq. 5 to construct the domain-invariant feature f‘; Afterward,
the outputted feature map Fﬁl from the last block of f.s is utilized to generate
the domain-invariant class activation map (D-CAM). We upsample F/, to the
input image resolution before thresholding to obtain pixel-level pseudo labels.

Specifically, we adopt Gradient-weighted Class Activation Mapping (Grad-
CAM) [21] to generate the activation map based on F,

C = GradCAM(E}). (6)

C is then thresholded to obtain the segmentation pseudo-label. For a target
domain with unlabeled images, we generate the domain-invariant class activation
maps as pseudo segmentation labels based on the classification network f.,
trained on source domain. Then, the corresponding segmentation model can be
trained with these images and pseudo labels. In the following experiments, for
each target domain, we use the images in the training set as unlabeled images,
and validate the segmentation model trained with pseudo labels on the test set.

3 Experiments

The proposed method is compared with eleven image-label weakly-supervised
medical image segmentation methods, namely, HistoSegNet [2], SEAM [23], SC-
CAM [3], C-CAM [4], WSSS-Tissue [7], OEEM [16], PistoSeg [6], HAMIL [26],
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Table 1. Comparison with state-of-the-art image-label weakly-supervised medical im-
age segmentation methods. BCSS as source domain.

Method Publication ‘ BCSS — Hist ‘ BCSS — WSSS

‘Tumor Stroma mloU FwloU ACC ‘Tumor Stroma mloU FwloU ACC
Baseline 39.40 48.94 44.17 44.21 61.66| 31.87 46.44 39.15 39.69 57.17
HistoSegNet [2] [ICCV'2019 41.62 46.94 44.28 44.30 61.50| 36.43 44.04 40.23 40.51 57.63
SEAM [23] CVPR2020 40.87 47.52 44.19 44.22 61.49| 39.84 41.58 40.71 40.77 57.87
SC-CAM [3] CVPR2020 | 41.57 46.76 44.16 44.19 61.39| 39.53 42.50 41.02 41.12 58.21
C-CAM [4] CVPR2022 | 41.22 47.67 44.44 44.47 61.72] 39.94 42.14 41.04 41.12 58.22
WSSS-Tissue [7]|MIA2022 38.85 50.52 44.68 44.74 62.35| 38.55 43.66 41.11 41.29 58.37
OEEM [16] MICCAT'2022| 42.54 46.88 44.71 44.73 61.87| 39.40 43.55 41.48 41.63 58.71
PistoSeg [6] AAAT2023 41.52 48.19 44.85 44.89 62.12|40.09 44.73 42.09 42.58 59.35
HAMIL [26] TMI'202 40.26 49.53 44.89 44.94 62.34|43.16 43.17 43.17 43.17 60.30
S2C [14] CVPR2024 | 41.35 45.67 43.51 43.62 61.46 | 39.98 44.06 42.02 42.19 58.94
CoSA [24] ECCV’2024 | 40.98 50.01 45.50 45.87 62.09| 44.35 42.48 43.42 43.80 60.18
PathMamba [5] |[MICCAT'2024| 41.58 45.36 43.47 44.08 61.50 | 41.06 44.18 42.62 42.79 59.07
D-CAM (ours) |MICCAT'2025/44.63 49.56 47.09 47.12 64.14|47.41 45.85 46.63 46.57 63.61

Table 2. Comparison with state-of-the-art image-label weakly-supervised medical im-
age segmentation methods. Hist as source domain.

Method Publicatio ‘ Hist— BCSS [ Hist— WSSS

106 ublication ‘Tumor Stroma mloU FwloU ACC \Tumor Stroma mloU FwloU ACC
Baseline 66.03 64.29 65.16 65.16 78.92| 45.36 64.68 55.02 55.73 72.69
HistoSegNet [2] [ICCV'2019 66.34 65.21 65.77 65.77 79.36 | 47.73 64.98 56.35 56.99 73.47
SEAM [23] CVPR'2020 | 66.61 65.04 65.83 65.83 79.41|46.44 64.62 55.53 56.20 72.93

SC-CAM [3] CVPR2020 | 67.79 65.056 66.42 66.42 79.86| 49.01 65.39 57.20 57.80 74.03
C-CAM [4] CVPR’2022 | 66.99 65.04 66.02 66.01 79.55| 49.06 64.94 57.00 57.58 73.79
WSSS-Tissue [7]|MIA2022 67.45 65.43 66.44 66.44 79.86| 47.72 64.98 56.35 56.98 73.46

OEEM [16] MICCAT'2022| 67.91 66.44 67.18 67.17 80.38|49.23 64.76 56.99 57.56 73.73

PistoSeg [6] AAAT2023 68.44 66.15 67.30 67.30 80.48|49.85 65.84 57.85 58.44 74.50

HAMIL [26] TMI'2023 68.25 67.00 67.63 67.63 80.70|52.29 65.22 58.75 59.23 74.82

S2C [14] CVPR2024 | 64.95 63.28 64.12 64.24 78.41|43.91 62.08 53.00 53.24 70.19

CoSA [24] ECCV™2024 ] 66.48 65.17 65.83 65.95 80.64|44.50 62.97 53.74 53.92 75.06

PathMamba [5] |MICCAT'2024| 68.14 67.57 67.86 67.99 81.02| 46.85 65.30 56.08 56.17 72.80
)

D-CAM (ours) |MICCAT'2025/70.51 69.08 69.80 69.80 82.23| 50.88 66.04 58.46 59.02 74.88

S2C [14], CoSA [24] and PathMamba [5], under the cross-domain setting. Among
them, WSSS-Tissue [7] serves as our baseline. Since benchmarking the domain
generalized WSSS is a new task where only the common categories across do-
mains are involved, all the compared methods are re-implemented by the default
hyper-parameters and configurations and the results only include the common
categories.

Datasets: Three publicly-available tissue segmentation datasets, i.e., LUAD-
HistoSeg [7], BCSS-WSSS [7] and WSSS4LUAD [§], are involved for cross-
domain experiments. For simplicity, we denote them as Hist, BCSS, and WSSS,
respectively, in the following text. Two cross-domain common categories among
these three datasets, namely, tumor and stroma, are used for validation.
Evaluation Metrics: Following existing weakly-supervised medical image seg-
mentation works [7], the mean IoU (mlIoU), frequency weighted IoU (FwloU)
and pixel-level accuracy (ACC) of both categories, are used for evaluation.
Implementation Details: The proposed D-CAM keeps the same baseline and
hyper-parameter settings of [7]. In the first stage, the classification network fes
uses a ResNet-38 with pre-trained weights on ImageNet as the backbone and
then finetunes on the corresponding tissue dataset under the default hyper-
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Table 3. Ablation study on how each frequency component (P, A, P, A) impacts the
weakly-supervised medical image segmentation performance on unseen target domains.
BCSS as source domain. Evaluation metrics are presented in percentage (%).

BCSS — Hist BCSS — WSSS
Tumor Stroma mloU FwloU ACC [Tumor Stroma mloU FwloU ACC
P+A (baseline)| 39.40 48.94 44.17 44.21 61.66 | 31.87 46.44 39.15 39.69 57.17

Component

P+A 39.68 48.87 44.29 44.33 61.75| 38.98 43.70 42.16 42.35 58.89
P+A 37.19 51.76 44.48 44.54 62.48| 41.97 43.31 43.38 43.52 59.97
P 37.21 48.69 42.95 43.00 60.65| 43.31 43.53 44.11 44.47 61.35
P 42,20 51.21 46.70 46.74 64.02| 45.27 44.18 44.23 46.17 62.30
P+A (ours) 44.63 49.56 47.09 47.12 64.14|47.41 45.85 46.63 46.57 63.61

parameter settings. The classification activation map (CAM) is generated from
the classification network f.s and converted into the pseudo label following all
the default operations in [7]. In the second stage, a DeepLab-V3 segmentation
model is trained under the supervision of the generated pseudo label by the
proposed method, under the same and default hyper-parameter settings of [7].

3.1 Comparison with State-of-the-art

BCSS as Source Domain: The results, when generalized to Hist and WSSS,
are listed in Table 1. The proposed D-CAM improves the mloU metric by up to
2.20% and the accuracy metric by 1.79% on the Hist target domain. Additionally,
when embedded into other CAM-based methods like C-CAM [4] and S2C [14],
our amplitude normalization strategy consistently boosts generalization perfor-
mance on unseen domains. The improvement of tumor category is up to 2.09%
in mIoU. Similarly, D-CAM improves the mIoU by 3.40% and the accuracy by
3.31% on the WSSS target domain. The improvement of tumor category is up
to 4.25% in mloU.

Hist as Source Domain: The results, when generalized to BCSS and WSSS
target domains, are reported in Table 2. The proposed D-CAM improves the
mloU metric by 2.17% and the accuracy metric by 1.53% on the BCSS target
domain. Notably, the improvement of tumor category is up to 2.07% in mIoU. On
the other hand, the proposed D-CAM yields an mIoU of 58.46% and an accuracy
of 74.88%, outperforming all the rest state-of-the-art and achieving very close
performance to HAMIL. In general, the proposed D-CAM especially allows the
generated pseudo labels to be domain invariant and shows more robustness than
existing methods on unseen target domains.

3.2 Ablation Study

The proposed D-CAM is plug and play when embedded into the first-stage clas-
sification network. Our ablation study focuses on the impact of each frequency
component and its interaction. Especially we focus on the following cases: 1)
baseline (i.e., original classification network), where the phase and amplitude
components both come from the original medical image (denoted as P+A); 2)
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Fig. 2. Visual segmentation result comparison between the proposed method and the
state-of-the-art methods on the BCSS (first and second rows) and WSSS (third and
fourth rows) target domains. Hist is used as the source domain.

using the features from the normalized medical image (denoted as P+ A); 3) us-
ing the phase component from the normalized medical image and the amplitude
component from the original medical image (denoted as P+ A); 4) only using the
phase component from the original medical image (denoted as P); 5) only using
the phase component from the normalized medical image (denoted as 15). Notice
that, the proposed method can be regarded as using the phase component from
the original medical image and the amplitude component from the normalized
medical image (denoted as P+A).

The results are listed in Table 3. Naively using the phase component from
the original (P) or normalized (P) image shows varying performance depending
on the domain pair. Using the original medical image (P+A) only leverages
the information from the source domain, and the performance is consequently
inferior to the other settings. On the other hand, combining the normalized
amplitude and the original phase (P+/~1) shows a superior performance, as the
domain-dependent style information is removed. Additionally, removing Stage
2 leads to a 3-5% mloU drop on target domains, confirming the necessity of
refinement.

3.3 Visualization of Segmentation Results

Fig. 2 shows visual results of the proposed method and existing state-of-the-art
methods. Hist dataset is used as the source domain. BCSS (first and second
rows) and WSSS (third and fourth rows) datasets are used as the unseen target
domains, respectively. The proposed method shows the best visual results.
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4 Conclusion

In this paper, we made an initial exploration to learn domain generalized weakly-
supervised medical image segmentation when only under the image label supervi-
sion. Compared with domain generalized medical image segmentation under the
conventional fully-supervised conditions, the key challenge of this task mainly
lies in that the quality of pseudo label is easily degraded by the style information
from different domains. To address this issue, we proposed a domain invariant
class activation map learning scheme dubbed as D-CAM. Its key idea is to de-
couple the content that is stable among different domains and the style that is
domain dependent in the frequency space. Extensive experiments on multiple
cross-domain settings showed the state-of-the-art performance of D-CAM. We
hope our research could foster further exploration of the generalization ability
of weakly-supervised segmentation in the medical community.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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