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Abstract. Noisy labels in high-dimensional, and multiclass medical im-
age datasets pose a significant challenge for machine learning models.
While hybrid quantum-classical architectures, such as quantum neural
networks (QNNs), have shown promise in medical imaging, their ro-
bustness under noisy label conditions remains largely unexplored. To
address this gap, we propose a Noise-aware Quantum Neural Network
(NQNN), integrating Fourier Attenuation, Reweight Estimation, and
Adaptive Pooling to enhance feature extraction and classification ro-
bustness. Fourier Attenuation filters high-frequency noise, Reweight Es-
timation prioritizes cleaner labels based on uncertainty, and Adaptive
Pooling dynamically refines feature aggregation. We evaluate NQNN on
six benchmark medical datasets (PathMNIST, BloodMNIST, OrganAM-
NIST, OrganCMNIST, OCTMNIST, and DermaMNIST) across noise
ratios (10%, 30%, and 50%) and classification configurations (binary,
four-class, and full multiclass). Comparative benchmarks against five
QNN-based and two deep-learning baselines demonstrate NQNN’s supe-
rior performance, such as achieving 80.25% accuracy on organCMNIST
at 10% noise and maintaining strong performance at higher noise ratios.
Our ablation studies validate the effectiveness of each noise-handling
mechanism, highlighting their complementary contributions to noise ro-
bustness. By bridging quantum advancements with real-world medical di-
agnostics, NQNN establishes a new benchmark for noise-resilient medical
image classification, offering a scalable and adaptive quantum-classical
learning framework.

Keywords: Medical Image Classification - Quantum Neural Networks
(QNNs) - Noisy Label Learning.

1 Introduction

Medical image datasets heavily rely on expert annotations, yet these annota-
tions are inherently prone to label noise due to subjectivity error (L0} [25]). Thus,
noisy labels can significantly degrade model performance, particularly in high-
dimensional and multiclass datasets. While deep-learning approaches, such as la-
bel correction techniques and robust loss functions, have demonstrated efficacy in
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mitigating these shortcomings (I7; 21)), they often depend on clean validation sets
or the assumption of specific noise distributions, which is limited in real-world
settings. Quantum Neural Networks (QNNs), which integrate quantum circuits
with neural network layers, have emerged as a promising paradigm for multiclass
medical image classification due to their potential for high-dimensional feature
representation and quantum parallelism (14} 12} 26). However, their applicability
under noisy-label conditions—where annotations may be incorrect or inconsis-
tent—remains largely unexplored. In particular, no prior work has systematically
evaluated the noise robustness of QNNs or adapted them to address mislabeled
data in multiclass clinical imaging scenarios. To address this gap, we introduce
a hybrid quantum-classical framework, namely Noise-aware Quantum Neural
Network (NQNN), specifically designed to improve robustness under noisy la-
bel conditions. Our motivation stems from the need to ensure model reliability
when medical image annotations are flawed—an issue often encountered in prac-
tice. NQNN integrates three complementary mechanisms—Fourier Attenuation,
Reweight Estimation, and Adaptive Pooling—within a Variational Quantum Cir-
cuit (VQC). Fourier Attenuation filters high-frequency noise through quantum
Fourier transforms and controlled phase rotations, enhancing feature clarity (7).
Reweight Estimation prioritizes cleaner labels by adjusting sample importance
based on noise levels (9)). Adaptive Pooling refines feature aggregation by dy-
namically adjusting quantum operations based on noise distribution, ensuring
robust feature retention (19 4). We conduct extensive experiments on six bench-
mark datasets from MedMNISTv2 to validate the effectiveness of NQNN under
varying levels of symmetric label noise (10%, 30%, and 50%) and across multiple
classification configurations (binary, four-class, and full multiclass). Our exper-
iments also include evaluations on clean datasets to ensure that noise-resilient
mechanisms do not compromise performance in standard settings.
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Fig. 1: Our framework consists of feature extraction using an Encoder and a
Quality Embedding Network, followed by Variational Quantum Circuit
processing with three noise-resilient mechanisms for ensuring robust multiclass
classification under clean and noisy labels.
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2 Proposed Noise-Aware Quantum Neural Networks

We propose a noise-aware quantum-classical framework, NQNN, for multiclass
medical image classification where label noise is prevalent. As shown in Fig. [T}
the architecture integrates a hybrid classical-quantum pipeline with three com-
plementary noise-resilient mechanisms embedded into a Variational Quantum
Circuit (VQC): Fourier Attenuation, Reweight Estimation, and Adaptive Pool-
ing. These modules address distinct noise dimensions—frequency, uncertainty,
and spatial variability. The classical frontend consists of an Encoder that ex-
tracts 64-dimensional spatial features from medical images and a Quality Em-
bedding Network that outputs a 16-dimensional uncertainty-aware repre-
sentation. To capture label noise, the network computes two types of uncer-
tainty—disagreement uncertainty U; and single-target (entropy) uncertainty
Us—based on the predicted class probabilities p. from the softmax output.

C C
Ugzi) =1=Y p2, Us(w:)=—> pclogpe. (1)
c=1 c=1

The outputs from both modules are concatenated into an 80-dimensional
feature vector, which serves as the input to the VQC for quantum processing.
The Variational Quantum Circuit (Fig. [2)) encodes the 80-dimensional vec-
tor into quantum states using parameterized Rx and Rz gates. Entanglement is
introduced through CNOT operations across qubit pairs, enabling complex cor-
relations to enhance feature representation. Fourier Attenuation suppresses
high-frequency label noise by operating in the frequency domain. The input fea-
ture signal f(z) is transformed via the Fourier Transform (Eq. [2):

) = [ g, 2)

and filtered by a low-pass mask, where F”(u) = F(u) if |u| < u., and 0 otherwise,
and then reconstructed back to the spatial domain via inverse transform (Eq. [3)):

fa= [ P, (3)

Reweight Estimation assigns sample-wise importance weights by combining
both uncertainty measures. These weights modulate the rotation angles of quan-
tum gates, emphasizing cleaner samples during training:

wi =1 = (Ua(w:) + Us(:)). (4)

Adaptive Pooling preserves key spatial patterns by adjusting pooling scales
according to the input and output dimensions, mitigating the influence of noisy
spatial features:

Input Height _ Input Width

= - L e ———— 5
oh Output Height’ s Output Width (5)
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Finally, the quantum circuit outputs are measured using Pauli-Z observables.
The collapsed quantum states are passed to a fully connected layer, produc-
ing class predictions. This integrated architecture enables robust learning from
noisy-labeled, low-resolution medical images while remaining compatible with
near-term quantum simulation constraints.
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Fig.2: A single block of the Variational Quantum Circuit in the NQNN frame-
work. This block represents data encoding layers using R, and R, gates,
entanglement operations via CNOT gates, and trainable quantum layers
with parameterized rotations (R,, Ry, R.), controlled phase rotations and
Hadamard gates and dynamically adjust quantum rotations to suppress high-
frequency noise and enhance feature aggregation under noisy label conditions.

3 Experiments

In this section, we introduce our experimental settings and discuss the results.
Datasets: We evaluate NQNN on six medical image datasets from MedM-
NISTv2 (23)), chosen for their diversity, clinical relevance, and compatibility with
quantum simulation. All datasets are standardized to 28 x 28 resolution and
evaluated under 10%, 30%, and 50% symmetric label noise by randomly
flipping class labels. PathMNIST (D1) (107,180 samples, 9 classes) includes
colorectal cancer histology patches. BloodMNIST(D2) (17,092 samples, 8
classes) features visually similar blood cells. Organ AMNIST (D3) (58,218 sam-
ples, 11 classes) and OrganCMNIST (D4) (24,292 samples, 11 classes) contain
abdominal CT slices for organ classification. OCTMNIST(D5) (109,309 sam-
ples, 4 classes) differentiates retinal diseases via OCT. DermaMNIST (D6)
(10,015 samples, 7 classes) includes dermatoscopic images of skin conditions.
These datasets present challenging multiclass tasks under structured label noise,
ideal for assessing robustness in simulation-constrained quantum models.
Hyperparameter Settings and Evaluation: All models, including NQNN
and baselines, were trained with the Adam optimizer (0.001 learning rate, 128
batch size) and cross-entropy loss for up to 30 epochs with early stopping on
validation loss. We use accuracy (ACC) as the main evaluation metric for classi-
fication. Experiments were conducted using the Pennylane simulator with GPU
acceleration (Ubuntu 20.04, Python 3.9, TensorFlow 2.6, PyTorch 1.10, Pen-
nylane 0.25). For reproducibility, the full implementation and supplementary
materials are available here.


https://drive.google.com/drive/folders/1zi3cZn4COkLhgNIqfJHtsApwdLUaFzqW?usp=drive_link
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Table 1: Classification Performance of NQNN on Clean Medical Datasets Under
Different Number of Classes |C| Settings.

Data | |C| | QCNN | QTNet | HQNet | QCCNet | A-HQCNN | NQNN

C2 | 69.79% | 47.13% | 47.95% 52.25% 50.00% 81.59%
D1 | C4 | 62.92% | 25.33% | 23.28% 23.38% 24.62% 76.15%
All | 61.65% | 13.95% | 11.63% 11.42% 12.66% 75.21%
C2 | 65.70% | 48.84% | 50.26% 49.58% 54.64% 86.80%
D2 | C4 | 63.53% | 25.89% | 24.59% 25.06% 43.47% 76.41%
All | 62.48% | 12.32% | 12.30% 12.69% 20.17% 73.73%
C2 | 69.21% | 50.07% | 50.81% 50.67% 50.13% 73.73%
D3 | C4 | 65.44% | 25.55% | 24.49% 24.54% 24.70% 84.38%
All | 61.76% | 12.52% | 12.36% 12.57% 12.01% 81.43%
C2 | 69.43% | 49.33% | 49.84% 49.84% 77.88% 84.50%
D4 | C4 | 67.78% | 24.37% | 23.53% 23.58% 44.42% 82.73%
All | 63.01% | 13.18% | 11.95% 12.92% 21.66% 79.92%
C2 | 51.27% | 50.60% | 49.16% 48.99% 49.66% 69.05%
D5 | C4 | 45.08% | 35.79% | 34.90% 35.20% 34.77% 64.86%
All | 38.47% | 25.79% | 24.90% 25.20% 24.77% 59.05%
C2 | 50.38% | 47.33% | 55.73% 48.85% 40.00% 89.61%
D6 | C4 | 48.47% | 30.65% | 35.61% 29.56% 35.44% 83.74%
All | 41.47% | 20.65% | 32.61% 21.56% 25.44% 82.67%

Competing Methods: We benchmark NQNN against five quantum and two
classical baselines, selected for their methodological relevance to quantum or
noise-resilient medical image classification. Our goal is not to critique or diminish
prior work, but to contextualize our noise-resilient layers within existing quan-
tum and classical frameworks. As no existing QNNs are explicitly designed for
multiclass noisy-label scenarios, we faithfully reproduced these baselines from
their original descriptions to evaluate their generalization performance under
controlled label noise. QCNN (Quantum Convolutional Neural Network) (3]
introduced quantum convolution and pooling layers for efficient quantum fea-
ture extraction. QTNet (Quantum Transfer Learning Network) (5) combined
classical ResNet18 with quantum variational circuits for multiclass classification
scalability. HQNet (Hybrid Quantum Neural Network) (I6]) integrated classical
CNNs with quantum convolutional layers for feature learning. QCCNet (Quan-
tum Circuit-based Convolutional Network) (24]) proposed a structured quantum
circuit architecture optimized for computational efficiency. A-HQCNN (Adap-
tive Hybrid Quantum CNN) (1) utilized parameterized quantum convolutional
layers with adaptive optimizers for improved convergence. These quantum mod-
els were originally designed and validated under clean-label scenarios, and we
recognize the value of their contributions in advancing hybrid and quantum
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learning. In our study, we evaluated their performance under synthetic label
noise to assess the generalizability of such frameworks, not to suggest limitations
in their original context. We also include two classical baselines designed specif-
ically for noisy-label settings. DUE-Net (Dual-Uncertainty Estimation Net-
work) (9) leveraged disagreement and entropy-based uncertainty for reweighting
with Monte Carlo Dropout. RWNet (6]) applied noise transition matrices and
reweighting techniques for label correction. These models provided strong base-
lines for classical robustness under noisy annotations. All baseline implemen-
tations were either adapted from original code (where available) or faithfully
re-implemented following their respective publications, ensuring consistent pre-
processing, training, and evaluation pipelines across all datasets. Our comparison
highlights the effectiveness of integrating noise-resilient layers into QNNs while
respecting the foundational contributions of prior methods.

Results and Discussion: We present and discuss the performance of NQNN
under three settings: (i) multiclass classification on clean datasets, (ii) noisy
label classification, and (iii) an ablation study assessing noise-handling mecha-
nisms. The results highlight NQNN'’s robustness, scalability, and effectiveness in
handling multiclass medical image classification under noisy labels.

(i) Classification Performance on Clean Datasets: We evaluate NQNN
against five QNN-based baselines on six datasets under three settings: binary
(C2), four-class (C4), and full multiclass, in Tab. |1 NQNN consistently outper-
forms all baselines across datasets. For BloodMNIST, NQNN achieved 86.80%
in C2, 76.41% in C4, and 73.73% in All, significantly outperforming QCNN
(65.70%, 63.53%, 62.48%). PathMNIST exhibited similar trends due to the lack
of dedicated noise-handling mechanisms and conventional label correction meth-
ods in baseline models. In more complex datasets like OrganAMNIST and Or-
ganCMNIST, NQNN outperforms all the baselines in every setting for noise-
resilient feature extraction mechanisms. Consequently, the results presented in
Tab. ] collectively demonstrate that our three proposed mechanisms significantly
enhance NQNN, making it a highly scalable and noise-resilient model for medical
image classification, outperforming all baseline models.

(ii) Noisy Label Classification Under Different Noise Ratios: We eval-
uate NQNN across noise levels (10%, 30%, 50%) on all datasets, with results in
Tab. 2] NQNN consistently outperforms QNN baselines and remains competi-
tive with deep learning models, showing greater robustness as noise increases. In
PathMNIST, NQNN achieved 71.32% at 10% noise, surpassing all QNN base-
lines and closely approaching DUE-Net (80.23%). At 30% and 50%, NQNN main-
tained 63.49% and 58.02%, outperforming QNN baselines that exhibited sharper
declines, while deep learning models struggled with label correction failures.
BloodMNIST showed a similar trend, with NQNN reaching 70.39%, 64.78%,
and 61.93%, whereas RWNet and DUE-Net experienced steep accuracy drops
at higher noise levels. In Organ AMNIST, NQNN demonstrated strong noise re-
silience, achieving 80.32% at 10% noise, outperforming most QNN baselines and
RWNet (44.83%). In OCTMNIST, NQNN reached 78.32% at 10% noise, sustain-
ing 59.88% and 61.61% at higher noise levels, where baseline models struggled
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Table 2: Comparison between NQNN and Baseline Models on Multi-class Clas-
sification Under Different Noise Ratios, nr.

nr | Models | D1 | D2 | D3 D4 D5 D6
QCNN @) | 65.97% | 64.22% | 63.82% | 63.07% | 24.53% | 54.28%
QTNet (B) | 12.22% | 13.33% | 12.29% | 9.39% | 26.46% | 17.57%
HQNet (I6) | 12.83% | 13.80% | 14.25% | 9.75% | 25.31% | 16.43%
Lo | QUCNet @2) | 13.43% | 13.89% | 13.98% | 9.66% | 26.84% | 22.86%
A-HQCNN (1) | 25.95% | 23.04% | 15.18% | 14.07% | 27.61% | 13.66%
DUE-Net (@) | 80.23% | 82.30% | 29.03% | 86.93% | 52.37% | 41.61%
RWNet 6) | 76.15% | 79.67% | 44.83% | 83.46% | 50.01% | 22.98%
NQNN 71.32% | 70.39% | 80.32% | 78.32% | 55.33% | 80.25%
QCNN @) | 58.05% | 53.36% | 52.34% | 53.52% | 21.31% | 46.43%
QTNet (5) | 10.76% | 12.50% | 11.80% | 8.50% | 19.69% | 15.14%
HQNet (I6) | 10.57% | 13.86% | 13.06% | 8.24% | 24.22% | 15.57%
sov, | QCONet @) | 13.19% | 11.09% | 1055% | 9.60% | 24.25% | 20.14%
A-HQCNN (1) | 24.26% | 22.97% | 14.89% | 10.89% | 25.34% | 11.06%
DUE-Net (@) | 59.05% | 64.64% | 28.86% | 68.65% | 45.45% | 27.95%
RWNet (6) | 60.13% | 54.19% | 35.00% | 64.99% | 44.29% | 22.36%
NQNN 63.49% | 64.78% | 73.88% | 59.88% | 46.55% | 71.01%
QCNN @) | 46.32% | 46.59% | 44.04% | 42.46% | 14.69% | 42.14%
QTNet (5) 8.18% | 13.07% | 12.03% | 9.60% | 10.00% | 13.00%
HQNet (I6) | 10.35% | 10.52% | 13.36% | 8.15% | 23.91% | 13.00%
sov, | QCONet @) | 11.53% | 11.20% | 1250% | 9.60% | 22.97% | 17.00%
A-HQCNN (1) | 15.23% | 22.33% | 12.60% | 10.26% | 24.14% | 11.16%
DUE-Net (@) | 48.35% | 49.77% | 23.92% | 48.82% | 40.62% | 24.22%
RWNet (6) | 44.55% | 43.90% | 28.28% | 46.90% | 40.70% | 19.25%
NQNN 58.02% | 61.93% | 61.69% | 61.61% | 41.71% | 66.14%

due to dataset complexity. While quantum models face dataset size constraints
across all datasets, NQNN maintained stability under increasing noise, demon-
strating the effectiveness of noise-resilient mechanisms in mitigating label noise.

(iii) Ablation Study on Noise-resilient Mechanisms: We assess the con-
tributions of Reweight Estimation (A), Fourier Attenuation (B), and Adaptive
Pooling (C) in Tab. |3 Fourier Attenuation performed best individually, particu-
larly in high inter-class similarity datasets like OrganCMNIST (73.27% at 10%).
However, the combination of A+B achieved more robust performance, reaching
66.78% on BloodMNIST at 10% noise and maintaining 57.32% on OrganAM-
NIST at 50% noise. The A4+B+C combination (NQNN) consistently outper-
formed all configurations, demonstrating that integrating noise-aware weighting,
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frequency filtering, and spatial consistency mechanisms enhances scalability and

robustness in noisy medical image classification.

Table 3: Ablation Study: Evaluating Individual and Combined Noise-Resilient
Feature Extraction Mechanisms in NQNN under Different Noise Ratios, nr.

Dataset\ nr \ A \ B \ C \ A+B \ B+C \ A+C \A+B+c

10% | 51.12% | 55.51% | 31.35% | 61.04% | 54.10% | 51.92% | 71.32%
D1 30% | 37.10% | 41.26% | 25.35% | 53.39% | 40.99% | 27.10% | 63.49%
50% | 31.20% | 35.21% | 21.26% | 44.04% | 35.99% | 31.20% | 58.02%

10% | 58.09% | 61.05% | 48.09% | 66.78% | 59.25% | 58.09% | 70.39%
D2 30% | 56.15% | 56.59% | 43.22% | 63.97% | 54.70% | 56.15% | 64.78%
50% | 45.59% | 50.45% | 33.22% | 51.22% | 49.45% | 45.59% | 61.93%

10% | 51.16% | 61.46% | 41.49% | 71.55% | 61.06% | 52.16% | 80.32%
D3 30% | 43.65% | 51.46% | 33.74% | 63.01% | 52.28% | 46.65% | 73.88%
50% | 38.65% | 42.43% | 32.46% | 57.32% | 46.01% | 40.65% | 61.69%

10% | 61.19% | 71.21% | 50.81% | 73.27% | 72.21% | 62.19% | 78.32%
D4 30% | 52.91% | 57.99% | 42.32% | 58.00% | 53.41% | 53.91% | 59.88%
50% | 38.28% | 56.74% | 29.32% | 55.79% | 47.07% | 39.28% | 61.61%

10% | 42.52% | 45.38% | 32.47% | 48.25% | 47.52% | 42.52% | 55.33%
D5 30% | 37.45% | 39.24% | 27.96% | 45.55% | 42.99% | 37.45% | 46.55%
50% | 33.61% | 34.98% | 25.23% | 34.92% | 39.90% | 33.61% | 41.71%

10% | 24.77% | 24.28% | 17.32% | 65.46% | 53.82% | 54.77% | 80.25%
Dé 30% | 22.84% | 21.11% | 12.98% | 52.98% | 51.56% | 42.84% | 71.01%
50% | 21.73% | 19.87% | 10.66% | 43.04% | 47.82% | 31.73% | 66.14%

4 Related Works

Several studies have explored noise-resilient learning across classical and quan-
tum settings. In the quantum domain, Mathur et al. (I5) introduced Quantum
Orthogonal Neural Networks (QOrthoNN) to prevent gradient vanishing, while
Trochun et al. (20) validated hybrid quantum models under noisy label sce-
narios. Xue et al. (22) proposed collaborative co-training with label filters for
robust classification, and Khanal et al. (I1) showed Vision Transformers (ViTs)
outperform CNNs in noisy settings via self-supervised learning. In the classi-
cal domain, Veit et al. (21I) proposed a multi-task label-cleaning network to
handle large-scale noise. Lee et al. (I3)) introduced CleanNet for scalable noise
reduction using transfer learning, and Gao et al. (8) designed Deep Label Dis-
tribution Learning (DLDL) to represent ambiguity through distributions. Other
contributions include Rank Pruning (I7) for eliminating low-confidence samples,
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ensemble-based soft label generation (I8]), and knowledge distillation for label
denoising (2)). These works inform our noise-handling mechanisms, but none
embed them directly into quantum circuits. NQNN builds on these ideas by
extending noise-resilient learning to Variational Quantum Circuits, where label
noise robustness remains underexplored.

5 Conclusion and Future Work

This study introduces NQNN, a quantum-classical framework for multiclass med-
ical image classification, integrating Fourier Attenuation, Reweight Estimation,
and Adaptive Pooling to enhance robustness under noisy labels. NQNN is the
first framework to embed noise-resilient mechanisms directly within a Variational
Quantum Circuit (VQC), addressing noisy-label robustness in multiclass med-
ical imaging—a gap unaddressed in prior QNN studies. Extensive experiments
on six benchmark datasets across varying settings and noise ratios (10%, 30%,
50%) demonstrate that our framework achieves superiority over all baselines.
The VQC enables structured noise mitigation while remaining feasible under
current simulation constraints via shallow-depth circuits and low qubit count.
In the future, we will focus on optimizing circuit depth for scalability on real
quantum hardware and extending NQNN to handle structured and asymmetric
label noise for broader medical AI applications.

Disclosure of Interests. The authors declare no competing interests. All contribu-
tions were made for academic purposes.
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