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Abstract. Medical images span a wide range of imaging protocols and
anatomical regions, exhibiting two fundamental properties: inter-organ
diversity—where different organs exhibit distinct structural patterns (e.g.,
hand vs. chest)-and intra-organ consistency—where each organ retains a
coherent structure with subtle variations across patient (e.g., left vs. right
hand). While existing foundation models typically focus on a single or-
gan or combine organs across heterogeneous modalities—often failing to
jointly capture both properties—we envision that a model purposefully
built on these fundamental properties would yield representations with
greater generalizability, robustness, and interpretability. To this end, we
introduce a general-purpose and scalable framework for learning foun-
dation models from diverse organs within a given imaging modality. We
call our framework Coda, as it is explicitly designed to jointly capture
both the consistency and diversity of anatomical structures, encoding
high-level semantic relationships across distinct organs and fine-grained
anatomical details within each organ. Our experiments in zero-shot, few-
shot transfer, and full-transfer settings show that Coda, pretrained on
23 diverse organs, learns semantically rich representations that not only
yield strong inter-organ and intra-organ discrimination capabilities but
also offer superior generalizability and robustness on diverse tasks.
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1 Introduction

Foundation models like BERT [4] and GPT-4 [23] have led to major break-
throughs in natural language processing, and their success has, in turn, revolu-
tionized the development of vision-language models. A key factor behind their
success is their ability to capture the underlying structures (foundation) of the
English language, including syntactic and semantic relationships [20]. However,
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foundation models recently developed for medical imaging have yet to achieve
comparable impact, largely due to their limited capacity to grasp the foundation
of medical images—human anatomy—and to capture the underlying anatomical
structures inherent in medical images [12].

Medical images are acquired across a wide range of imaging protocols and
anatomical regions and exhibit two fundamental properties: inter-organ diver-
sity—where each organ presents distinct structural patterns (e.g., hand vs. chest)—
and intra-organ consistency—where each organ retains a coherent structure with
subtle variations across patients (e.g., left hand vs. right hand). A key limitation
of existing foundation models lies in their inability to jointly capture both prop-
erties in their learned representations. Models trained on a single organ within
a specific modality (e.g., chest X-rays) typically capture intra-organ consistency
but lack anatomical diversity, limiting their transferability [26,6]. Conversely,
models trained across multiple organs from heterogeneous modalities (e.g., ra-
diographs and CT scans) account for inter-organ diversity but encounter opti-
mization difficulties due to substantial cross-modality discrepancies [28].

To address this limitation, we introduce Codal, a novel framework explic-
itly designed to jointly capture both the consistency and diversity of anatomical
structures in its learned representations. As illustrated in Fig. 1, Coda serves as
a general-purpose and scalable framework for building foundation models from
diverse organs within a given imaging modality. Its learned representations are
not only semantically rich—encoding both high-level relationships across diverse
organs and fine-grained anatomical details within each organ—but also robust
and transferable across tasks. Owing to widespread clinical use and anatomical
breadth of radiography, we train Coda on a diverse dataset comprising radio-
graphs from 23 distinct organs. Through extensive evaluations on a variety of
downstream tasks, including zero-shot (Fig. 2), full-transfer (Fig. 3), and few-
shot (Tab. 1) learning settings, we show that Coda consistently outperforms
large-scale fully supervised and self-supervised medical baselines.

Coda fundamentally differs from existing self-supervised learning (SSL) meth-
ods [3,14,9,7,1,8,10,27,16,2,11], which disregard semantic organ correlations across
images in their learning objectives, by explicitly modeling inter-organ relations
across a wide range of images. Coda also sets itself apart from existing super-
vised and self-supervised multi-organ learning approaches [21,22], which either
depend on costly expert annotations or fail to capture the inherent anatomi-
cal properties of organs, including inter-organ diversity and intra-organ consis-
tency. In summary, we make the following contributions: (1) A novel framework
that simultaneously captures inter-organ semantic relationships and fine-grained
intra-organ anatomical variations across patients; (2) A set of zero-shot analyses
demonstrating Coda’s capability to model anatomical structures inherent prop-
erties, preserving both inter-organ diversity and intra-organ consistency in the
learned embedding space; and (3) A comprehensive set of experiments showcas-
ing Coda’s enhanced generalizability and robustness in few-shot and full-transfer
learning settings compared to large-scale fully/self-supervised medical models.

! In music, a “coda” is a concluding section that resolves earlier motifs.
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Fig. 1. (Left) Medical images exhibit two key properties: inter-organ diversity, where
each organ presents distinct structural patterns (e.g., hand, chest, spine), and intra-
organ consistency, where an organ maintains structural resemblance while displaying
subtle variations across patients (e.g., left hand vs. right hand). We propose that a
deep model capable of capturing these inherent anatomical properties will effectively
learn the underlying anatomical structures in medical images, resulting in representa-
tions with enhanced generalizability and robustness. To this end, we introduce a novel
framework that learns a semantically rich embedding space, effectively distinguishing
different organs (denoted by different colored boxes) while also capturing intra-organ
variations. Specifically, for a given organ, patients with similar anatomical appearances
(e.g., p1 and p2) have closer embeddings, while those with distinct anatomical varia-
tions (e.g., p3) are mapped farther apart. (Right) Coda framework comprises two key
branches: (1) inter-organ learning, which captures high-level features to differentiate
organ classes by maximizing the agreement between embeddings of the same organ; and
(2) intra-organ learning, which encodes fine-grained features to differentiate instances
of the same organ by enforcing alignment between embeddings of different views of the
same instance. Student and teacher networks are shared among two branches.

2 Method

Our Coda aims to learn semantically rich and robust visual representations by
capturing intrinsic anatomical knowledge from multi-organ medical images. As
illustrated in Fig. 1, Coda develops a comprehensive understanding of organ
structures by modeling semantic organ relationships and capturing fine-grained
organ details through two key components:

(1) Inter-organ learning aims to learn high-level discriminative representa-
tions that enable the clustering of images of the same organ while distinguishing
images of different organs (e.g., hand, chest, spine) in the embedding space. The
inter-organ branch consists of the student (fp,) and teacher (fp,) encoders, as
well as two projector heads hy,,, and hgwg . The parameters of the student fp,
and the projector head hy . are optimized via back-propagation, whereas the

org
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teacher network fy, and head hgorq are updated via an exponential moving aver-
age (EMA) of the fp, and hy,,, respectively. Given an input batch of images, we
apply data augmentation twice to create two augmented copies, which together
form a multi-viewed batch. The first augmented copy of the batch is processed
by the student and projector head hyg,, , while the second augmented copy is
processed by the teacher and projector head hfgmg. For any sample x; within the
multi-viewed batch, the objective of the inter-organ branch is to maximize the
agreement between its embeddings and those of the samples x,, € P,, that share
the same organ as x;, while minimizing the similarity between its embeddings
and those of the samples z,, € N,, from different organs. To this end, we employ
a contrastive loss function [18] tailored for multi-organ datasets:

Z 1 €xXp (Zl ! ZP/T) (1)

epePy, EzneNzi exp (2 * 2n/T)

Einter—org

le

where 7 is a temperature parameter that controls distribution sharpness.

(2) Intra-organ learning aims to learn fine-grained discriminative represen-
tations that enable identifying subtle differences within instances of the same
organ (e.g. left vs. right hand). The intra-organ branch consists of the student
(fo.) and teacher (fy,) encoders, which are shared with the inter-organ branch,
along with two projector heads hy,, . and h’ . Given an input sample x;, we
first extract a set NV of multi-scale crops from it. We then apply data augmenta-
tion to x; and pass it through the teacher network and projector hj.  to obtain
its embedding z{ = hy (fp,(;)). Next, we augment the multi- scale crops in
N, and pass them through the student network and projector hg, . to obtain
their embeddings Zf = {zf = he,,. (fo.(2})) | i € N}. The objective of the
intra-organ branch is to maximize the agreement between the softmax normal-
ized embeddings [1] of the input sample and its augmented views. To achieve
this, we employ a cross-entropy loss:

1
Lintra—org = 7@ Z 7’25 lOg Zf (2)
il srez;

Overall training scheme. To enable end-to-end representation learning, the
inter-organ and intra-organ learning objectives are combined into a total loss
L = Linter—org + Lintra—org. Through our unified training scheme, Coda learns
an embedding space where semantically similar organs have similar embeddings
while preserving subtle variations within instances of the same organ, resulting
in more powerful representations for diverse tasks.

3 Experiments and Results

We adopt the base version of ConvNeXt (ConvNeXt-B) [19] as the backbone for
both student and teacher networks. Projection heads consist of 3-layer MLPs
with a hidden dimension of 2048, [, normalization, and a weight-normalized fully
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Fig. 2. (a) t-SNE visualization of organ embeddings (unseen in Coda’s training) in
zero-shot setting (without fine-tuning). Unlike existing multi-organ models, Coda pro-
duces semantics-rich embeddings with strong inter-organ discrimination, forming well-
separated clusters for different organs (denoted by distinct colors). (b) A detailed
analysis of Coda’s embeddings reveals that within each organ class, distinct islands
emerge, corresponding to anatomical variations of the same organ. This demonstrates
Coda’s intra-organ discrimination capabilities. For example, knee images (yellow) form
separate clusters based on imaging views (sunrise, lateral, and anteroposterior); chest
images (pink) split into frontal and lateral views; and hand images (green) group by
different hand poses. Additionally, anatomically related regions, such as the pelvis and
abdomen, form closer clusters, reflecting their inherent structural similarities.

connected layer with an output dimension of 65,536. Coda is trained on a diverse
dataset of radiographs covering 23 distinct organs, including the abdomen, ankle,
calcaneus, chest, clavicle, elbow, facial bones, femur, finger, foot, forearm, hand,
hip, humerus, knee, neck, patella, pelvis, shoulder, skull, spine, thumb, and wrist.
We train Coda for 800 epochs using the AdamW optimizer, batch size of 64, a
cosine learning rate scheduler with a base learning rate of 1.25¢ — 4, and input
resolution 224 x 224. Data augmentations T include color jittering, Gaussian blur,
rotation, and random cropping with NV = 12 crops of size 96 x 96 and a scale range
of [0.4, 0.7]. Once trained, the teacher model is transferred to downstream tasks.
In the following, Coda is rigorously compared with both fully-supervised and
self-supervised baselines trained on large-scale datasets, demonstrating superior
performance in zero-shot anatomy understanding, few-shot transfer, and full-
transfer settings across 6 common yet challenging tasks on 5 public datasets,
covering various diseases and body parts.

(1) Coda encodes semantics-rich representation, excelling in anatomy
understanding in zero-shot settings.

Ezperimental Setup: To evaluate Coda’s anatomical understanding capabilities,
we analyze its representations in a zero-shot setting (without fine-tuning) against
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state-of-the-art supervised and self-supervised multi-organ medical models, in-
cluding RadImageNet [21] and LVM-Med [22]. Specifically, we use images unseen
during Coda’s pretraining, containing seven randomly selected organs (abdomen,
knee, hand, foot, wrist, pelvis, and chest), extract their embeddings using Coda
and each baseline model, and visualize them in a 2D space using t-SNE plots.

Result and Analysis: As shown in Fig. 2-a, both the fully-supervised Radlma-
geNet and self-supervised LVM-Med models produce mixed embeddings, where
different organs are not well-separated. By contrast, Coda generates highly sep-
arable features, resulting in distinct clusters that clearly distinguish different
organs. This underscores Coda’s ability to learn discriminative features that en-
able strong inter-organ discrimination. An in-depth analysis of the t-SNE plot
for Coda in Fig. 2-a reveals distinct islands within each organ class. We delve
deeper into this phenomenon by inspecting specific images within each island.
Fig. 2-b shows that within different islands, images of the same organ with vary-
ing appearances appear, highlighting the intra-organ discrimination capabilities
of Coda’s representations. For example, knee images (yellow points) form sepa-
rate islands based on sunrise, lateral, and anteroposterior views. Similarly, chest
images (pink points) are grouped by frontal and lateral views. Also, hand im-
ages (green points) are separated into groups containing two hands, left hands,
and right hands. Moreover, closely related anatomical regions, such as the pelvis
and abdomen, form clusters closer together compared to other organs, reflecting
their structural similarities. In conclusion, these results demonstrate that Coda
not only captures high-level discriminative features by modeling the semantic
relationships between organs, but also effectively extracts fine-grained anatom-
ical details within individual images, enabling distinct separation of images at
both the class and instance levels.

(2) Coda offers generalizable representations for a variety of tasks,
demonstrating superiority in full-transfer settings.

Ezperimental Setup: To demonstrate the generalizability of the representations
learned by our framework, we compare the transfer performance of Coda against
competitive publicly available fully-supervised and SSL baselines trained on
large-scale datasets, including DINO [1], RadImageNet [21], LVM-Med [22], and
CheSS [3], which are trained on 1.2M, 1.3M, 1.35M, and 4.8M images, respec-
tively. We fully fine-tune all models on 6 diverse downstream tasks, including
tuberculosis [17], lung nodule [25], and pneumothorax [29] classification, as well
as clavicle [17], heart [17], and femur [5] segmentation. Adhering to standard
transfer learning protocols [15,13], pretrained models are adapted for classifi-
cation tasks by appending a task-specific fully connected layer to pretrained
models. For segmentation tasks, a U-Net architecture [24] is employed, with the
encoder initialized using pretrained models and the decoder randomly initial-
ized. To ensure fair comparisons, we utilize the official model of each baseline,
which is meticulously optimized, and run each model 10 times under the same
experimental setup in each task. We also report performance when training the
downstream models from random initialization.
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Fig. 3. Coda offers generalizable representations for a variety of tasks, demonstrating
superior transfer performance across diverse classification/segmentation tasks com-
pared with state-of-the-art baselines, including large-scale fully supervised and self-
supervised multi-organ medical models.

Result and Analysis: As shown in Fig. 3, Coda consistently exhibits superior
performance compared to fully-supervised and self-supervised baselines across
tasks. Specifically, Coda outperforms the supervised RadlmageNet model across
all tasks, despite being pretrained using SSL without relying on human expert
annotations, whereas RadlmageNet depends on such annotations. Furthermore,
Coda surpasses self-supervised DINO and CheSS baselines in all tasks. Addition-
ally, Coda surpasses LVM-Med, which was trained on 1.3 million medical images
from 16 body organs, achieving superior performance in tuberculosis, nodule,
and pneumothorax classification, as well as clavicle and femur segmentation.
This highlights the effectiveness of Coda in learning diverse and discriminative
representations from a variety of organs by capturing their semantic relation-
ships in the embedding space, leading to improved transferability across different
tasks, diseases, and organs.

(3) Coda provides robust representations for limited data regimes,
achieving superior performance in few-shot transfer settings.

Ezperimental Setup: We assess the robustness of Coda’s representations in lim-
ited data regimes, a critical requirement for medical imaging applications with
scarce annotated data. To this end, we conduct few-shot transfer learning exper-
iments on tuberculosis classification, clavicle segmentation, and heart segmen-
tation. Specifically, we fine-tune Coda using varying portions of labeled data
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Table 1. Coda achieves remarkably superior performance in few-shot transfer for clas-
sification and segmentation tasks, highlighting the significance of our anatomy learning
strategy in enhancing the robustness of the learned representations. Also, with only
10%, 10%, and 20% of the training data, Coda achieves 93%, 91%, and 93% of its
full-data performance in tuberculosis classification, heart segmentation, and clavicle
segmentation, demonstrating its strong data efficiency. A show performance boosts
achieved by Coda compared with the baseline in each task/data portion.

Method Tuberculosis classification (AUC%)| Clavicle segmentation (IoU%) Heart segmentation (IoU%)
1% (4-shot) 10% 20%  50% |1% (I-shot) 10% 20% 50% |1% (l-shot) 10% 20% 50%
LVM-Med 59.50 86.82 88.78  94.27 50.54 53.49 69.10 79.88 36.42 48.04 48.15 73.97
Coda (ours) 81.70 90.72 93.09 96.14 56.26 76.96 82.50 85.97 67.05 83.75 88.42 91.13
A 122.2 3.9 4.3 1.9 5.7 123.5 1T13.4 16.1 130.6 +35.7 140.3 1T17.2

(1%, 10%, 20%, and 50%) and compare its performance with LVM-Med, which
outperformed other state-of-the-art supervised and self-supervised models in full-
transfer settings (see Fig. 3).

Result and Analysis: As shown in Tab. 1, Coda consistently outperforms LVM-
Med across all tasks and data fractions, achieving average performance gains of
8%, 30%, and 12% in tuberculosis classification, heart segmentation, and clavi-
cle segmentation, respectively. Notably, in tuberculosis classification, when fine-
tuned with only 4 training samples (1% of the data), Coda surpasses LVM-Med
by a substantial margin of 22.2%. Similarly, in heart and clavicle segmenta-
tion, using just 1 training sample (1% of the data), Coda exceeds LVM-Med by
30.6% and 5.7%, respectively. Furthermore, with only 10%, 10%, and 20% of the
training data, Coda achieves 93%, 91%, and 93% of its full-data performance
in tuberculosis classification, heart segmentation, and clavicle segmentation, re-
spectively, demonstrating its strong data efficiency. These results highlight the
effectiveness of our anatomy-guided learning strategy in enhancing the robust-
ness of the learned representations, enabling Coda to generalize effectively in
low-data settings and ultimately reducing annotation costs.

(4) Ablation: impact of learning objectives. We evaluate the impact of
each learning branch in Coda by comparing the performance of each branch
individually with the performance when both branches are integrated across two
downstream tasks. As seen in Tab. 2, the integration of Linier—org and Linira—org
results in superior performance compared to using either objective individually.
This suggests that the unified learning approach in Coda effectively captures
both high-level organ discrimination and fine-grained organ details, leading to
more comprehensive representations across downstream tasks.

4 Conclusion

This work introduces Coda, a general-purpose and scalable framework for learn-
ing foundation models from diverse organs within a given imaging modality. By
explicitly modeling both the consistency and diversity of anatomical structures,
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Table 2. Ablation study on each learning objective of Coda: The integration of
Linter—org and Lintra—org Within our framework yields more diverse and comprehensive
representations, resulting in superior performance over either objective individually.

Tuberculosis classification Clavicle segmentation

Linter—org Lintra—org (AUC%) (Dice%)
v 95.7440.96 84.8540.94
Objective v 97.17+0.74 85.23+0.54
v v 97.784+0.77 85.59+0.60

Coda captures semantically rich representations that encode high-level relation-
ships across organs and preserve fine-grained intra-organ variations. Through
extensive evaluations in zero-shot, few-shot, and full-transfer settings, Coda
demonstrates strong inter-organ and intra-organ discrimination, as well as su-
perior generalizability and robustness across medical tasks. In future work, we
aim to extend Coda to additional imaging modalities to further broaden its
applicability.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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