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Abstract. Tubular tree structures, such as blood vessels and airways,
are essential in human anatomy, and accurately tracking them while
preserving their topology is crucial for various downstream tasks. Trex-
plorer is a recurrent model designed for centerline tracking in 3D medical
images, but it is prone to predicting duplicate branches and terminat-
ing tracking prematurely. To address these issues, we present Trexplorer
Super, an enhanced version that substantially improves performance
through several novel advancements. Evaluating centerline tracking mod-
els is challenging due to the lack of public benchmark datasets. To enable
thorough evaluation, we develop three centerline datasets, one synthetic
and two real, each with increasing difficulty. Using these datasets, we
perform a comprehensive comparison of existing state-of-the-art (SOTA)
models with our approach. Trexplorer Super outperforms previous SOTA
models on every dataset. Our results also highlight that strong perfor-
mance on synthetic data does not necessarily translate to real datasets.
The code and datasets are available at

https://github.com/RomStriker /Trexplorer-Super
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1 Introduction

Tubular tree structures in the vascular and respiratory systems play a critical role
in transporting essential substances throughout the body. Accurately tracking
the centerlines of these structures in medical images is fundamental for early
diagnosis, treatment, and various downstream tasks [956)2]. In this paper, we
introduce a new method for centerline tree tracking and propose a comprehensive
framework for its evaluation.

Several existing approaches address the challenge of centerline extraction,
but each comes with its own limitations. A common method segments the image
and then applies skeletonization [I8], but such models struggle with long-range
dependencies, leading to connectivity issues. Other models [TT/I6] detect cen-
terline nodes and edges in a two-step process but also suffer from connectivity
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errors. Recurrent models, such as reinforcement learning-based methods [23|[7],
iteratively track centerlines but rely on complex pipelines. Trexplorer [I0] simpli-
fies this with a DETR-based transformer [I] that uses breadth-first tracking to
ensure correct topology. However, it struggles with duplicate branch detections
and premature tracking terminations.

To overcome the limitations of existing centerline tracking methods, we pro-
pose Trexplorer Super, which builds on the Trexplorer model with several key
enhancements to improve accuracy, robustness, and completeness. Our method
reduces premature terminations and duplicate branches while improving new
branch detection and preserving fine spatial details in image features. To ensure
more consistent centerline extraction, we introduce Super Trajectory Training, a
strategy that retains and reuses tracking information across multiple steps. We
also refine feature representation with Focal Cross Attention, which selectively
attends to a focal region in high-resolution image features while maintaining
broader contextual awareness. To further enhance robustness, we employ Target
Augmentation, a strategy that improves bifurcation and new branch detection
while minimizing duplicate branches. These advancements contribute to a more
reliable and comprehensive centerline tracking framework.

Evaluating centerline tracking in 3D medical images is challenging due to
the lack of publicly available real datasets. Existing synthetic datasets have
topological limitations, and strong performance on these does not generalize well
to real data. To address this, we create one synthetic and two real datasets and
establish a comprehensive baseline by evaluating prior SOTA models alongside
our approach using point-, branch-, and tree-level metrics.

Our key contributions include: (1) enhancing the Trexplorer framework with
novel techniques, namely Super Trajectory Training, Focal Cross Attention, and
Target Augmentation; and (2) creating three datasets and thoroughly evaluating
the previous SOTA models alongside our method.

2 Method

Our goal is to estimate the centerline tree from a given CT volume and a starting
root point. The centerline tree is represented as a graph (V, E) with V' nodes
and E edges. Each node v € V is defined as a vector v = [z,y, z, 7], representing
the 3D position and radius of a centerline point, while an edge e € E represents
a connection between two nodes.

Trexplorer Super is a DETR-based model that uses object queries to track
branches. It begins at the root point and tracks each branch to its endpoint. The
model estimates the total number of branches and the number of nodes within
each branch. Tracking follows a sequential, breadth-first approach in which, at
each step, all child nodes at the next graph level are predicted. Each child node
is approximately one voxel away from its parent and is classified into one of three
categories: end node, intermediate node, or bifurcation node. The model stops
tracking a branch when it predicts an end node. If the node is intermediate, it
continues tracking subsequent nodes. For bifurcation nodes, it halts tracking of
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Fig. 1. Overview of the Trexplorer Super architecture, illustrating: (a) Super Trajec-
tory Training, (b) Focal Cross Attention, and (c) Target Augmentation.

the current branch and assigns a new set of 26 object queries, some of which
start tracking the new branches, while the rest are discarded. Trexplorer Super
builds on Trexplorer by incorporating the following novel key components. The
model architecture is shown in Figure

2.1 Super Trajectory Training

Trexplorer generates a centerline graph over 9 steps, starting from the center of
a volume patch. New patches are created at the last step nodes of the tracked
graph, which are used by the model, along with the past trajectory, to con-
tinue tracking until all endpoints of the tree are reached. The past trajectory
token, an embedding of up to 10 previous node positions, is the only source of
past information when tracking in a new patch. This simplifies the formation of
training batches, as each batch is independent. However, it results in the loss
of the learned past trajectory embedding stored in the object queries, causing
premature branch terminations and missed branches, leading to a lower recall.
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To better utilize past trajectory information, we propose Super Trajectory
Training (STT). In STT, each sample cousists of a super trajectory of size 54,
divided into six sub-trajectories of size 10 with shared link nodes. Each sub-
trajectory is paired with a volume patch centered at its starting node, as shown
in Figure (a). Secondary branches may appear within a sub-trajectory, but they
are only tracked within the corresponding patch during training.

During training, object query outputs from the previous sub-trajectory are
used as inputs for the next sub-trajectory, along with new volume patches.
This preserves the valuable past trajectory information embedded in the object
queries. In contrast, Trexplorer’s training strategy is analogous to training on a
single sub-trajectory. The first sub-trajectory still relies on the past trajectory
token. During inference, tracking begins at the root point, and for subsequent
patches, the object query outputs from previous patches are used. This forms a
continuous chain from the root to all endpoints, enabling more effective tracking.

2.2 Focal Cross Attention

In Trexplorer, object queries track branches by aggregating information from
image features using the transformer’s cross-attention module [I9]. For tubular
structures like vessel trees, capturing long-range dependencies and fine-grained
spatial details is crucial for accurately locating thin, elongated branches. How-
ever, using large, high-resolution features quickly becomes computationally in-
feasible for 3D medical images. Some methods address this by using learned
sparse attention [26/13I24], but they rely on object queries to determine which
features to attend to. This conflicts with Trexplorer’s use of object queries to
store branch tracking history, leading to poor performance.

Trexplorer Super introduces Focal Cross Attention (FCA), which extracts
high-resolution features over a large region but restricts cross-attention to the
small focal region where branches are being tracked, as shown in Figure b).
By training the model end-to-end, the responsibility for aggregating long-range
dependencies while maintaining fine-grained spatial details is delegated to the
feature extractor. This design allows the decoder object queries to focus on
retaining tracking history while cross-attending to a smaller, more relevant set
of features.

2.3 Target Augmentation

As the radius of a bifurcation node increases, the area of viable positions for the
bifurcation also increases, rather than being a single fixed point. Trexplorer Super
is trained to account for this positional ambiguity using Target Augmentation.
During target augmentation, for each bifurcation point in the primary branch
of a super trajectory, an offset is sampled from a Laplace distribution with
mean p = 0 and scale b proportional to the bifurcation radius. This offset shifts
secondary branches up or down along the primary branch, effectively generating
viable augmented targets as shown in Figure c). The branches around these
new bifurcation points are smoothed to preserve natural trajectories.
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Table 1. Statistics of the ground truth centerline graphs for the provided datasets.

Dataset Samples |Max Node Average Radius
train val test| Degree |points depth width|max mean min
Synthetic Dataset| 368 32 100 4 2763 343 20 | 17 537 2
ATM’22 220 16 60 4 7398 504 55 |23 247 1
Parse 2022 72 8 20 4 19644 498 126 | 38 2.55 1

Training with augmented targets encourages the model to consider more
nodes as potential bifurcations, improving the detection of new branches. This
strategy also reduces duplicates, leading to fewer volume patches to process
and eliminating the need for post-processing. The reduction in duplicates can
be attributed to the combined effect of Super Trajectory Training and Tar-
get Augmentation, which greatly enhances the effect of the Hungarian loss and
self-attention between object queries, two key components used for prevent-
ing duplicates in Trexplorer. Additionally, a small amount of Gaussian noise
(n=0,0 =0.025) is added to all points to further improve robustness.

3 Experiments and Results

3.1 Datasets

To our knowledge, the only publicly available 3D centerline tree dataset is the
synthetic vessel tree dataset [I8]. However, these trees were generated without
collision avoidance, resulting in unrealistic vessel intersections. To address this
issue, we use the Synthetic Vascular Toolkit (SVT) [I5[14] to generate a new
synthetic tree dataset with collision avoidance. We follow the same procedure
as [I8| to create the corresponding images. This dataset serves as a useful toy
example for model research and development.

For a comprehensive evaluation, we also generate centerline ground truth
from two publicly available real tubular tree segmentation datasets: the ATM’22
dataset [21I22125l20/12] (airway segmentation), licensed under CC BY-NC and
the Parse 2022 dataset [§] (pulmonary artery segmentation), licensed under
CC BY-NC-ND 6.0. The use of these datasets complies with the terms set
by the dataset owners. Before extracting the ground truth, we resample the
data volumes to 0.5 mm isotropic resolution. The Vascular Modeling Toolkit
(VMTK) [43] is used to extract root points from segmentation masks, which
Kimimaro [I7] then uses to trace the tubular tree centerlines. Further dataset
statistics are provided in Table

3.2 Evaluation Metrics

We evaluate predictions at the point, branch, and tree levels to capture different
aspects of accuracy. At the point level, we use Precision, Recall, and F1-score.
A predicted node is considered a True Positive (TP) if a ground truth node
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exists within its 1.5-voxel radius that has not been matched to another predic-
tion; otherwise, it is a False Positive (FP). An unmatched ground truth node is
considered a False Negative (FN). We also assess radius accuracy using Mean
Absolute Error (MAE). Given the large number of nodes, we avoid metrics that
require solving the Linear Assignment Problem.

At the branch level, we again use Precision, Recall, and F1-score while treat-
ing branches as objects. A predicted branch is considered a TP if it correctly
matches at least 80% of the points in a ground truth branch within a 1.5-voxels
radius, provided that the ground truth branch has not already been matched.
Otherwise, it is an FP. Unmatched ground truth branches are considered FNs.
To evaluate the overall graph structure, we use topological metrics, specifically,
the MAE of Betti-0 (connected components) and Betti-1 (cycles).

3.3 Experiments

We evaluate two previous state-of-the-art (SOTA) models, Vesselformer and Tr-
explorer, alongside our proposed method, Trexplorer Super, on three datasets.
All models were trained on a single node with four A100 GPUs, with Trex-
plorer and Trexplorer Super using mixed precision for improved efficiency. To
ensure a fair comparison focused on model improvements, Trexplorer and Trex-
plorer Super share nearly identical hyperparameters: allocating 26 tokens for a
bifurcation node, and a maximum of 196 tokens. Both models were trained for
approximately 2 million iterations. Vesselformer produced the best results for
author-optimized hyperparameters, with 80 object tokens and approximately 12
million training iterations. Each model was trained five times per dataset, and
we report the mean and standard deviation for each metric.

3.4 Results

Tables [2 and [3] summarize the performance of the evaluated models on the pro-
posed datasets, while Figure [2] provides a visual comparison using one sample
from each dataset. On the synthetic dataset, Vesselformer achieves a higher F1-
score than Trexplorer. Although Trexplorer has better recall, it generates many
duplicate branches, leading to low precision. Trexplorer Super improves recall
over Vesselformer, though still lower than Trexplorer, while drastically reducing
duplicates, resulting in the highest overall Fl-score. On ATM’22, Vesselformer
retains some centerline tracking ability but misses branches and predicts dupli-
cates, resulting in a low overall score. Trexplorer performs worse, barely tracking
any branches due to limited access to past trajectory information. Trexplorer
Super, with its enhancements, delivers strong improvements across all metrics.
Parse 2022 presents a greater challenge due to denser trees and weaker vessel
signals. Both Vesselformer and Trexplorer struggle, but Trexplorer Super clearly
outperforms them.

Trexplorer Super achieves the lowest radius MAE for all datasets. At branch
level, it also performs the best across all metrics. Both Trexplorer and Trex-
plorer Super ensure topological correctness with zero Betti-0 and Betti-1 errors,



Trexplorer Super

Table 2. Comparison of different models using point-level metrics on the Synthetic,
ATM’22, and Parse 2022 datasets.

Model Point-level
Precision(%)1| Recall(%)t | F1(%)t | Radius (MAE)]
Synthetic Dataset
Vesselformer 44.53 £ 7.87 | 61.52 £ 1.14 | 48.18 £+ 5.62 | 0.4244 4+ 0.0134
Trexplorer 30.91 £+ 9.45 |78.21 £+ 4.13| 39.40 &+ 8.62 | 0.2263 £ 0.0323
Trexplorer Super|91.91 + 3.28| 70.44 + 3.02 |77.83 &+ 1.89|0.0955 + 0.0061
ATM’22 Dataset
Vesselformer 22.32 + 1.35 | 34.37 £ 0.94 | 26.77 £+ 1.27 | 0.7908 %+ 0.0095
Trexplorer 3.20 + 0.73 4.33 £+ 0.63 3.34 + 0.30 | 0.9744 + 0.0844
Trexplorer Super|67.51 + 1.35(60.65 + 2.01{60.45 + 1.03|0.3925 + 0.0241
Parse 2022 Dataset
Vesselformer 18.49 4+ 1.84 | 15.28 4+ 0.83 | 16.43 = 0.78 | 1.1144 + 0.0269
Trexplorer 9.87 £+ 3.76 12.01 £ 7.46 | 10.01 £+ 4.98 | 1.2108 + 0.3042
Trexplorer Super|55.27 + 3.00|33.99 + 3.34|39.46 + 1.93|0.5627 + 0.0141

Table 3. Comparison of different models using branch-level and graph-level metrics
on the Synthetic, ATM’22, and Parse 2022 datasets.

Model Branch-level Graph-level (MAE)
Precision(%)1| Recall(%)t |  F1(%)t Betti-0) | Betti-1]
Synthetic Dataset
Vesselformer 12.51 4+ 0.64 | 27.08 &+ 2.85 | 15.95 £ 0.36 | 81.7 & 16.8 |653.5 £ 138.7
Trexplorer 19.20 + 7.31 | 64.91 £ 3.68 | 26.26 + 7.18 |0.000 £ 0.0(0.000 + 0.0
Trexplorer Super|96.01 + 4.42(67.52 + 2.94(77.12 £+ 1.59|0.000 £ 0.0|0.000 £ 0.0
ATM’22 Dataset
Vesselformer 1.35 £ 0.19 3.67 + 0.41 1.95 £ 0.25 |312.5 4+ 25.1| 180.4 &+ 35.9
Trexplorer 0.03 £+ 0.01 0.14 £+ 0.04 0.05 + 0.02 | 0.00 & 0.0 | 0.00 % 0.0
Trexplorer Super|45.15 + 2.39(|42.23 + 1.54(41.15 4+ 1.28| 0.00 £ 0.0 | 0.00 ¥ 0.0
Parse 2022 Dataset
Vesselformer 2.32 £ 0.20 1.89 + 0.18 1.99 + 0.16 |410.1 £ 23.9| 246.7 £+ 78.1
Trexplorer 3.40 + 1.41 5.36 + 3.50 3.71+£1.91 |[0.00 &+ 0.0 | 0.00 £ 0.0
Trexplorer Super|35.45 + 2.89(|20.09 + 1.86(23.46 + 1.09| 0.00 £ 0.0 | 0.00 *+ 0.0

whereas Vesselformer struggles, predicting multiple disconnected components
and cycles.

The performance of Trexplorer Super is impacted by certain cases where it
fails to track the centerline, likely due to unseen intensity variations in the input
volumes. Applying image augmentation could help address this issue and further
improve performance.

3.5 Ablations

We conduct an ablation study on the ATM’22 dataset to evaluate the impact
of our key modifications to Trexplorer: Super Trajectory Training, Focal Cross
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Fig. 2. Visual comparison between the ground truth and the predictions from Ves-
selformer, Trexplorer, and Trexplorer Super on one sample from each dataset. Center-
line marker size is proportional to the radius at each node.

Attention, and Target Augmentation. Table[d]reports the mean and standard de-
viation of point-level metrics, including precision, recall, and F1-score, averaged
over three runs for each ablation. The results highlight Super Trajectory Train-
ing as the most critical improvement, allowing Trexplorer to perform effectively
on real data. Focal Cross Attention further enhances performance by enabling
the feature extractor to condense relevant information in the focal region. Target
Augmentation improves both recall and precision by reducing duplicate predic-
tions and enhancing the detection of new branches, leading to more complete
branch reconstructions.

4 Conclusion

We present major improvements to Trexplorer, enhancing its accuracy, robust-
ness, and completeness. Additionally, we introduce three new datasets and con-
duct a comprehensive evaluation, demonstrating that our model outperforms
two state-of-the-art baselines. While the results are promising, challenges re-
main, particularly on the Parse 2022 dataset. Future work includes leveraging a
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Table 4. Evaluation of the novel key components, Super Trajectory Training (STT),
Focal Cross Attention (FCA), and Target Augmentation (TA) incorporated in the
Trexplorer framework by Trexplorer Super for the ATM’22 Dataset.

Index Novel Key Components Point-level
STT FCA TA Precision(%)t | Recall(%)t | FL(%)*
1 3.07 £ 0.08 3.59 £+ 0.21 3.17 £ 0.11
2 v 36.57 £ 54.94 3.66 £ 3.20 2.56 + 2.19
3 v 44.87 £ 10.20 27.43 £ 7.69 33.01 £ 8.70
4 v v 61.76 £ 2.23 54.72 £ 7.45 53.91 £ 5.05
5 v v v 67.82 £ 1.04 61.20 £+ 2.50 |60.66 * 0.64

larger pretrained feature extractor and integrating advanced DETR variants or
recurrent architectures, such as LSTMs, for further refinement.
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