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Abstract. Uncertainty estimation is critical for reliable decision-making
in medical imaging. State-of-the-art uncertainty methods require sig-
nificant computational overhead and complex modeling. In this work,
we present and explore a simple, effective approach to incorporating
Bayesian uncertainty into deterministic networks by replacing the first
and/or last layer (visible layers) with their variational Bayesian coun-
terpart. This lightweight modification enables uncertainty quantification
through mean-field variational estimation, making it practical for real-
world medical applications. We evaluate the methods on ISIC and LIDC-
IDRI for the segmentation task and DermaMNIST and ChestMNIST for
the classification task using post-hoc and jointly-trained visible layers.
We demonstrate that variational visible layers enable uncertainty-based
failure detection for both in-distribution and near-out-of-distribution
samples, preserving task performance while reducing the number of vari-
ational parameters required for Bayesian estimation. We provide an easy-
to-implement solution for integrating uncertainty estimation into existing
pipelines.

Keywords: Uncertainty · Mean-Field Variational Inference · Bayesian
Neural Networks · Classification · Segmentation

1 Introduction

Applications of deep neural networks (DNNs) to medical image analysis have ad-
vanced significantly in the past few years; however, DNNs still suffer from over-
confident predictions, which poses a risk in safety-critical applications. The per-
formance of DNNs is also measured against highly catered benchmark datasets,
which are assumed to be independent and identically distributed [22]. The pre-
dictive performance of DNNs does not hold beyond the given test sets; when
deployed into a real-world environment, these models tend to perform poorly
and without any indicators to users of their intrinsic uncertainties [20, 30, 2, 15].
Therefore, uncertainty estimation rises as an important quantitative indicator
of the reliability of the model’s predictive performance. More importantly, un-
certainty quantification bridges the trust gap that hinders clinical adoption of
DNNs, providing transparency and enabling informed decision-making.
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Bayesian neural networks (BNNs) learn approximate distributions over the
weights, in contrast to deterministic DNNs, which rely on point estimates. Since
exact Bayesian inference in BNNs is intractable, various approximation methods
are employed to estimate the posterior, including Markov Chain Monte Carlo
(MCMC) [21, 24], the Laplace approximation [18], and variational inference [14,
16, 5]. MCMC provides a means to approximate the true posterior but incurs a
high computational cost, requiring a large number of samples for accurate esti-
mation. The Laplace approximation, while capable of capturing high predictive
uncertainty, depends on an approximation of the Hessian, which becomes com-
putationally prohibitive for large-class classification tasks or high-dimensional
outputs such as segmentation [8]. Variational inference offers a more scalable al-
ternative for Bayesian inference in large neural networks, by which the mean-field
variational inference (MFVI) models network parameters as independent distri-
butions with diagonal covariance. While MFVI scales better than MC sampling
and the Laplace approximation, it suffers from a noisy loss landscape, increased
training time, and a doubling of the number of learnable parameters [5]. De-
spite its robustness to distributional shifts, MFVI struggles to scale efficiently
to larger datasets, limiting its widespread adoption [22, 9].

Bayesian uncertainty methods are rarely adopted in medical image analy-
sis due to their high training complexity and computational cost, which pose
challenges for clinical integration and real-time decision-making. In practice,
approximate Bayesian methods such as MC Dropout [10], and deep ensembles
[17] are more commonly used for uncertainty estimation due to their ease of
implementation. However, deep ensembles require training and evaluating mul-
tiple networks, making them computationally impractical, while MC Dropout
produces uncalibrated predictions under distributional shifts, reducing its re-
liability in safety-critical applications like medical image analysis. Therefore,
the medical imaging community requires simpler implementations of Bayesian
neural networks that provide predictive uncertainty without the additional im-
plementation and training costs. Recent research [8, 26, 23, 11, 1] indicates that
reparameterizing a subset of network’s parameters probabilistically is sufficient
for uncertainty estimation, with strong evidence suggesting that introducing
stochasticity near the network input and output yields reliable uncertainty es-
timates without jeopardizing model performance. Recent work on variational
Bayesian last layers (VBLL) [11] has shown strong performance in regression,
medium-scale classification on natural images, and classification using LLM fea-
tures. By restricting sampling to the last layer, VBLL provides efficient uncer-
tainty estimation with minimal computational overhead. However, the method
introduces hyperparameters that are challenging to tune, potentially limiting its
practicality in real-world applications [11]. Additionally, a sparse sub-network
variational inference, guided by sensitivity analysis, has shown that selecting
variational parameters near the first and last layers can achieve uncertainty esti-
mates comparable to deep ensembles while using significantly fewer parameters
[1]. Building on these insights, we propose and investigate a practical training
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strategy for uncertainty estimation that can be applied both post-hoc and joint-
training. Our key contributions include:

1. We examine variational visible layers for failure detection, demonstrating
their effectiveness in in-distribution and near-out-of-distribution for medical
image segmentation and classification.

2. We benchmark uncertainty on ISIC, LIDC-IDRI, and Derma/ChestMNIST
under covariate shifts to evaluate uncertainty failure detection.

3. We automate KL divergence weighting in ELBO loss, eliminating the need
for hyperparameter tuning.

4. We release a plug-and-play package in PyTorch, enabling easy integration
into existing neural network models.4

2 Methods

2.1 Problem setup

Given a training dataset D = {(xn, yn)}Nn=1, where xn ∈ Rd represents a d-
dimensional input and yn ∈ Ck denotes the corresponding label among k classes
for classification and yn ∈ Yd for segmentation. Our goal is to train a neural
network to model the predictive distribution pθ(y | x,D), parameterized by θ.
In a Bayesian neural network (BNN) formulation, we place a prior p(θ) over the
parameters, and the posterior distribution is given by Bayes’ rule: p(θ | D) ∝
p(D | θ)p(θ). The predictive distribution is then obtained by marginalizing over
the posterior p(y | x,D) = Ep(θ|D)[p(y | x, θ)] which we approximate by drawing
N Monte Carlo samples from the posterior.

To improve the scalability of Bayesian inference, we employ Gaussian Mean-
Field Variational Inference [5] via the reparameterization trick [16], which ap-
proximates the posterior with a factorized distribution (independent parameter
assumption). To further reduce computational complexity, we limit Bayesian in-
ference to a subset of parameters θv ∈ θ, treating them as variational parameters
N (µ, σ2) while keeping the rest of the network deterministic.

2.2 Variational Visible Layers

We introduce two approaches to incorporate Bayesian inference into the first
and/or last layers of a neural network, guided by strong evidence [11, 26, 1, 23,
29] that these layers play a crucial role in capturing uncertainty.

1. Post-hoc Reparameterization: Given a pre-trained deterministic model, we
reparameterize the selected layer(s) by initializing their posterior means µ
to the corresponding point estimates from the pre-trained model, and fine-
tune the model. This enables uncertainty estimation without requiring full
retraining from random initialization, preserving the original model’s learned
representations while introducing Bayesian uncertainty.

4 https://github.com/zabboud/Variational-Visible-Layers
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2. Joint Training: The variational Bayesian layer(s) are jointly trained with the
deterministic backbone, with all parameters randomly initialized.

In both cases the loss is defined as the weighted sum of the negative log-
likelihood and the KL divergence term (-ELBO):

LELBO = E[− log p(D | θ)] + β ·DKL (qϕ(θ)∥p(θ)) . (1)

We introduce an automated method for scaling the hyperparameter β as equal
to the ratio of Bayesian parameters to the total model parameters, as opposed
to current methods that require manual hyperparameter tuning. This adaptive
weighting prevents the KL divergence term from dominating the likelihood, en-
suring that the model effectively captures both uncertainty and task-specific
performance. This method also eliminates the need for hyperparameter tuning.

The two training schemes are further divided into subcases, as illustrated
in Fig. 1. The Post-hoc Reparameterization method includes six configurations,
introducing stochasticity in (1) the first layer, (2) the last layer, or (3) both
layers (VVL). For each setup, we compare the performance of freezing the pre-
trained deterministic backbone versus allowing it to remain trainable. If freezing
produces similar results, it offers a computational advantage by reducing GPU
usage during the fine-tuning stage. In the Joint Training scheme, we train a
randomly initialized model with variational Bayesian first, last, or both layers
(VVL), establishing a baseline to compare against the post-hoc approach.

2.3 Implementation and Experimental Methodology

The approach described above is both model- and task-agnostic. We illustrate
the comparative performance of different training strategies in Fig. 1 on medical

Fig. 1: Training schemes: (1) Post-hoc Reparameterization, introducing stochas-
ticity into a pre-trained deterministic network by reparameterizing one or both
visible layers, with the backbone either frozen or trainable; and (2) Joint Train-
ing, where a randomly initialized model is trained with one or both variational
visible layers (VVL).
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image classification and segmentation tasks. To evaluate the performance of our
method, we compare it against the following baselines: an ensemble of networks
[17], last layer variational inference (VI) [22], which corresponds to the Joint-Last
layer training scheme in Fig. 1, a variational inference model, where all param-
eters are stochastic [5], and Sparse Bayesian Networks, which reparameterize a
subnetwork of variational parameters (denoted as Sparse VI) [1]. Additionally, a
standard deterministic model is included for comparison. Although MC-Dropout
[10] is a widely used approach, we do not include it as a comparative method, as
it has been shown to produce overconfident predictions, making it an unreliable
estimator of predictive uncertainty [17, 22].

We demonstrate the performance across all the 9 model variants in Fig. 1
compared to the baselines on segmentation of ISIC (2,594/100/1,000) [7, 27]
and LIDC-IDRI [3, 4, 6], and classification of DermaMNIST (7,007/1,003/2,005
train/val/test) and ChestMNIST (78,468/11,219/22,433) datasets [28]. LIDC-
IDRI volumes were cropped into 15,096 patches of size 128×128, each with seg-
mentation masks from four experts resulting in a 10,567/4,529 split. An input
size of 224×224×3 was used for ISIC and MedMNIST datasets.

The models were trained for 100 epochs using cross-entropy loss and an SGD
optimizer with an initial learning rate of 0.1. The learning rate was reduced by a
factor of 0.1 at epochs 30, 60, and 90. For Post-hoc methods, the initial learning
rate was set to 0.01. Weight decay was set to 1 × 10−4 for L2 regularization.
Batch normalization was applied to all models, with a batch size of 64, 128 for
DermaMNIST and ChestMNIST classification, respectively. A batch size of 10
was used for segmentation of both datasets. Five posterior samples were used for
VI sampling, and an ensemble of five members was trained to ensure comparable
results. Data augmentation includes random horizontal and vertical flips. To
assess reproducibility, each model was trained using five different random seeds
(selected sequentially from 0 to 25). For ensembles, each ensemble consists of
five models trained with distinct seeds. We report the median performance for
each metric along with its 95% confidence interval.

Assessing robustness to covariate shift. To evaluate the calibration and
reliability of uncertainty estimates under distributional shifts, we created a vari-
ant of the benchmark test sets using the perturbations outlined in [13]. This
assessment is critical, as natural variations in imaging protocols across institu-
tions, countries, and equipment can introduce distribution shifts that can sig-
nificantly impact model performance. Ensuring robustness to these variations is
essential for the safe deployment of medical image analysis models. We inject
seven types of corruptions, selected from the methods outlined in [13], that are
most relevant to variations in medical imaging. These include Gaussian noise,
defocus blur, zoom blur, brightness, contrast, saturation, and elastic deforma-
tions, each applied at five levels of severity. This creates a robustness benchmark
for the ISIC and LIDC-IDRI datasets, specifically targeting segmentation failure
detection under covariate distributional shifts.

Performance metrics. For ChestMNIST and DermaMNIST, classification
accuracy is used as the performance metric. Segmentation performance is as-
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sessed using Dice and intersection over union (IoU) scores for the LIDC-IDRI
and ISIC datasets, respectively. Brier Score (↓) is used to assess calibration of
probabilities (mean square error between one-hot inputs and predicted proba-
bilities). Entropy of expectation of probabilities is used to quantify the total
uncertainty. Negative log likelihood (NLL↓) is also used to assess model cali-
bration. To assess the reliability of a given model’s uncertainty, we evaluate the
area under the precision-recall curve (AUPR↑) for misclassified or poorly seg-
mented samples. For classification, we treat incorrectly classified examples as
the positive class [19]. For segmentation, we define a pass/fail criterion based on
clinically relevant thresholds for segmentation quality. In this study, we evaluate
AUPR using IoU or Dice thresholds, based on the average performance of the
model on in-distribution (ID) data, considering any score below the threshold as
a failure. The AUPR is then computed using the entropy of expectation (total
uncertainty) to measure the quality of the model uncertainty estimates, for both
ID test set shifted out-of-distribution (OOD) test set. The uncertainty AUPR
(uAUPR), therefore, serves as a failure detection metric.

3 Experimental Results

Model complexity and compute cost vary across approaches. If we take
the deterministic model with θ parameters and m compute cost per iteration,
then N-Ensembles scale linearly Nθ,Nm. Variational first layer and Variational
Visible Layers (VVL) add d and b + d parameters, respectively, where d and b
correspond to the number of parameters in the first and last layers, while main-
taining Nm compute. Last-model reduces compute to m+b(N−1) per iteration.
VI doubles parameters 2θ with Nm cost, while Sparse VI limits overhead to 1%
extra parameters with Nm cost/iteration.

MedMNIST Classification results on the DermaMNIST and ChestM-
NIST datasets using a ResNet18 [12] base model are presented in Figure 2. Ac-
curacy and Brier scores were found to be fairly stable across all the baselines and
the 9 variants, with an accuracy of 0.735±0.007, 0.947±0.001 for DermaMNIST
and ChestMNIST, respectively. For ID performance on DermaMNIST dataset,
the deterministic, ensemble, and Post-hoc Last Layer models achieve the best
performance based on NLL. However, for OOD failure detection using uAUPR,
the VVL-Frozen, VI, and First Layer-Frozen approaches demonstrate the best
performance in both ID and OOD settings. In contrast, for the larger ChestM-
NIST dataset, over an order of magnitude larger than DermaMNIST, the VVL-
Frozen, Last Layer-Frozen, and Sparse VI models achieve the highest overall
performance for both ID and OOD evaluation. A visualization of the uAUPR
performance on both ID and OOD misclassified samples is shown in Figures 2c
and 2d. The VI model achieves strong OOD performance, aligning with previous
findings that VI outperforms other uncertainty baselines in OOD but does not
scale well to large datasets [22]. Last-layer models have among the lowest NLL
performances, consistent with previous findings [26], and perform reasonably
well on ID/OOD failure detection as a post-training method (Fig. 2c, 2d).
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(a) ISIC
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(b) LIDC-IDRI
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(c) DermaMNIST
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(d) ChestMNIST

Fig. 2: uAUPR ↑, NLL ↓, Brier Score ↓, for ID (filled bars) and OOD (hashed
bars) performance evaluation of both performance and mis-classification and
mis-segmentation detection. (Det.=Deterministic, VVL= Variational Visible
Layers, VI=Variational Inference). Error is based on 95% confidence interval
of runs trained with five different seeds.
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Segmentation on ISIC and LIDC-IDRI, using a UNet architecture [25],
shows a similar pattern to classification on smaller datasets. For ISIC segmenta-
tion performance, all models achieve an IoU within the range of 0.844 ± 0.006,
except for VI, which has the lowest performans with an IoU of 0.76 ± 0.01. VI
model, however, outperforms the rest in uncertainty failure detection at the cost
of a lower absolute segmentation performance as measured by IoU and NLL.
This is also evident in the qualitative examples in Fig. 3, where VI has a poor
segmentation quality. For the ISIC dataset, ensemble models demonstrate strong
OOD performance, though they come with a significant drawback: an approx-
imately five-fold increase in the number of parameters compared to the VVL
approaches. In contrast, the Post-VVL and Post-Last approaches display strong
ID/OOD performance on both datasets. Qualitative visualization of predictions
and uncertainty are shown in Fig. 3 for the best and worst models.

4 Conclusions and Recommendations

We conducted an evaluation of post- and joint-training approaches for inte-
grating variational visible layers into existing model architectures. Our analysis,
covering segmentation and classification of medical images in different imaging
modalities, assessed predictive uncertainty under covariate shifts. Key findings
include: (1) For small-scale datasets, post-hoc reparameterization of visible lay-
ers matches or exceeds the performance of variational inference (VI) and ensem-
bles while using significantly fewer parameters; (2) on larger datasets, post-hoc
reparameterization of visible or final layers achieve the top failure detection per-
formance; and (3) across all experiments, VI and Sparse VI consistently demon-
strate strong failure detection, though often at the cost of higher NLL. Based

ID

Input Joint-Last Post-FirstLast-Frozen Ensemble Variational Inference

OO
D

ID

GT Unc. Post-Last-Frozen Post-FirstLast-Tune Post-FirstLast-Frozen Variational Inference

OO
D

Fig. 3: ISIC, LIDC segmentation ID and OOD samples, with inputs, binary pre-
dictions are displayed with colors (first column) representing TP (green), FP
(blue), and FN (red) predictions, and associated uncertainty (second column),
showing regions of high (red), white (mid), and low (blue) uncertainty. Joint last
shows very low uncertainty in OOD, VI displays high FN.
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on these findings, we recommend post-hoc reparameterization of VVL layers for
failure detection. For applications requiring fast inference, post-hoc reparame-
terization of the last layers is recommended. Future work should explore the
scalability of these methods on datasets > 105 samples to further validate their
effectiveness in large-scale applications, as well as explore threshold-independent
metrics for failure detection.
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