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Abstract. Inrecent years, deep learning-based vessel segmentation meth-
ods have made significant progress. However, the diversity of image
modalities and the high-cost of acquiring sufficient annotated data con-
strain the performance of existing approaches. Given that the primary
objective of segmenting various types of vessels is to extract high-frequency
tubular structures, leveraging existing annotated datasets for training
and fast generalizing to novel vessel segmentation tasks is an ideal so-
lution to the above challenges, which can be achieved by the few-shot
segmentation (FSS) paradigm. Unfortunately, the significant differences
in texture and thickness among different types of vessels leave unsolved
challenges. To address this issue, we propose a novel framework that
incorporates F'SS into cross-domain vessel segmentation. In particular,
we construct high-frequency auxiliary modalities to guide the model in
focusing on high-frequency features, which are highly correlated with ves-
sel regions, thereby bridging the texture gap between images of various
vessel types. Furthermore, we design a Dual-Modal Feature Extraction
and Fusion (DM-FEF) module to extract modality-specific features. Fi-
nally, addressing the thickness variations between different vessels, we
designed a Multi-Branch Feature Extractor (MBFE) module to capture
the diverse characteristics of vessels with different thickness, enabling the
model to perceive the thickness differences between distinct vessels. Ex-
perimental results on six public datasets demonstrate the effectiveness of
our method. Source code: https://github.com/ZiH-Huang/FSS Cross.

Keywords: Medical image - Vessel segmentation - Few-shot learning.

1 Introduction

Accurate vessel segmentation plays a crucial role in the diagnosis and treatment
of related diseases [21,20]. However, the diversity of image modalities, limited
data availability, and the high-cost of annotation constrain the performance of
existing methods. In the medical imaging field, to address these challenges, few-
shot segmentation (FSS) [19] becomes a research focus, enabling pre-trained
models to segment unseen classes using limited prompts without additional train-
ing. This paradigm achieves a better balance between accuracy and efficiency
compared to unsupervised[23,9, 10] or weakly supervised methods[14], which is
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Fig. 1. The overall framework of the proposed method. The encoders for the support
image and the query image share the same parameters.
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well-suited for vessel segmentation, as it allows training on existing datasets
(e.g., public color fundus datasets [26,12, 8]), and when novel data types are in-
troduced (e.g., private coronary artery data). The trained model only requires a
few annotated samples as support to segment target vessels, eliminating the need
for retraining. Unfortunately, the significant differences in imaging modalities
and target characteristics across various vessel datasets (i.e., the cross-domain
problem) present substantial challenges for applying F'SS to cross-domain vessel
segmentation tasks, and this issue remains largely unexplored.

To solve the above problems, we propose a novel framework to incorporate
FSS into cross-domain vessel segmentation, and with a focus on mitigating per-
formance degradation caused by the differences in texture and vessel thick-
ness between distinct types of vessels [23]. Firstly, based on the commonality
among different vessel segmentation tasks in the extraction of high-frequency
tubular structures, we propose a High-Frequency Auxiliary Modality (HFAM)
construction method. By combining traditional salience detection [2,28] and
Laplacian transformation, HFAM effectively highlights the high-frequency de-
tails, guides the model to focus on curvilinear structural characteristics, and
reduces the texture gap in cross-domain vessel segmentation. This auxiliary
modality image contains more high-frequency information compared to the orig-
inal image, while the original image retains more low-frequency information
related to the background. Based on this, we designed a Dual-Modal Feature
Extraction and Fusion (DM-FEF) module. In DM-FEF, two branches with
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different structures are employed to capture unique information from varying
modalities. Additionally, we introduce the cross-attention mechanism between
the two branches to enhance feature interaction, allowing the model to better
integrate complementary information. Finally, traditional few-shot segmentation
approaches [6, 31] tend to extract one or multiple representative prototypes in a
single feature space to represent the segmentation target, making it challenging
to capture the feature variations between vessels of different thicknesses. Accord-
ingly, we designed a Multi-Branch Feature Extractor (MBFE) module. Through
utilizing independent branches to capture the features of vessels with varying
thicknesses, the model gains the ability to perceive vessel thickness. This ap-
proach helps mitigate the negative impact of thickness variations in different
vessel types.

The contributions of our research are as follows: (1) We propose the HFAM
method, which effectively highlights high-frequency details and reduces the tex-
ture gap in cross-domain vessel segmentation. (2) We design the DM-FEF mod-
ule, enabling the encoder to capture unique information from both HFAM and
the original images. (3) We introduce the MBFE module, allowing the model to
perceive vessel thickness and mitigate the negative impact of thickness variations
across different vessel types. (4) To the best of our knowledge, we are the first
to incorporate FSS into the cross-domain vessel segmentation task. Compari-
son results with 10 state-of-the-art (SOTA) methods across 6 public datasets
demonstrate the superiority of the proposed approach.

2 Method

In this paper, the dataset is divided into the training set D4, and the testing
set Dyest, which belong to different domains. Specifically, the training dataset
Dyyqin consists of image-label pairs {(X,Y)}trqin. In each training iteration, a
random subset Sirqin = {(X;, Yi)}f:l, is selected as the support set, where S is
the number of support samples. Stqin guides the model to segment samples in
the query set Qirain, Where Sirqin N Qtrain = 0. During testing, a random subset
of S image-label pairs is selected from D;.s to guide the segmentation of the
remaining samples. In this study, the number of support samples S is set to 1.
The framework is shown in Fig. 1, with the main modules described as follows.

2.1 High-frequency auxiliary modality

Given the importance of high-frequency information in capturing structural
and textural features, we propose to create high-frequency auxiliary modality
(HFAM) for effectively highlighting vessel-related regions. Firstly, we employ
traditional low-cost saliency detection methods, including FT [1] and HC [4] to
generate saliency images Xy and X}, that highlight high-frequency regions and
suppress low-frequency background noise. Meanwhile, to enhance edge features,
we apply Laplacian transformation to emphasize object contours and critical
structures, and obtain the edge-enhanced image X;. Inspired by Mixup [32], to
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fully leverage the complementary characteristics of X ¢, X} and X;, and construct
diverse training samples, we fuse them according to the following formula:

XHFAM:)\1XXf+>\2XXh+)\3XXl (1)

here A1, Ao, and A3 are random weights generated from a Dirichlet distribution,
the probability density function is expressed as:

r (Z?:l ai) 3
f()\l,)\g,)\g;a):gin)\%—l (2)
[Tioy Ies) 55 '
here the concentration parameter is o = [1.5,1.5,1.5], I'(-) is the gamma func-
tion. Xgrap enhances the saliency regions and edge features of X, amplifying
the high-frequency information and critical structures relevant to the target.

2.2 Dual-modal feature extraction and fusion

Auxiliary modality images capture rich high-frequency information, while orig-
inal images include both foreground details and low-frequency background. Ac-
cordingly, at the early stage of feature extraction, we design a Dual-Modal Fea-
ture Extraction and Fusion (DM-FEF) module with three main components: 1) a
multi-scale residual feature extraction branch to capture local details and global
contextual information from original images. 2) a fine-grained feature extraction
branch to extract high-frequency information from auxiliary modality images.
3) cross-attention enhancement modules to strengthen feature alignment. The
module is based on the conv2 _x layer of ResNet-50 [11].

Multi-Scale Feature Extraction. The residual blocks are modified by
incorporating multi-scale parallel convolutions of different kernel sizes (3 x 3,
5 x5, and 7 x 7) for low- and high-frequency feature extraction. Small kernels
capture local details, while large kernels capture broader context.

Fine-Grained Feature Extraction. Given the nature of auxiliary modal-
ity images, we select small convolution kernels to focus on details like edge [29],
preserving high-frequency features. 3 x 3 convolution is chosen as the small con-
volution block. The structure remains consistent with conv2 _x in ResNet-50.

Cross-Attention Enhancement Module. To facilitate effective feature
fusion, we introduce cross-attention for dynamic interaction between the branches.
Taking the multi-scale feature extracting branch as an example, given the original
image feature F;, we initially transform the input sequences into three distinct
representations K;, (); and V;, the attention matrix A; can be computed as:

A; = softmax(Q; - K,[), Vi =V, -Al, Ff=~v- V' +F, (3)

)

where K,, V, is the distinct representations obtained from fine-grained feature
extraction branch, and ~ is a learnable parameter initialized to zero. Then we
fuse the enhanced features of the two branches by 1 x 1 convolution:

Fy = RELU(BN(Conwy 1 (F¢ ® FY))) (4)

where @ represents the concatenation operation, F is the features obtained
from fine-grained feature extraction branch and BN is batch normalization.
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2.3 Multi-Branch Feature Extraction

Thickness variations between vessel types hinder cross-domain segmentation.
For example, XCAD [18] vessels are typically thicker than OCTA [16] vessels,
causing the model to prioritize thick vessel features and struggle with segment-
ing thin vessels in OCTA, and vice versa. To address this, we follow [30] to
separate the entire vessels into thick and thin vessels, and introducing two in-
dependent branches Bypicr and Bypipn to learn their features in distinct spaces,
enabling the model to perceive thickness differences. Meanwhile, we introduced
an additional branch B, to provide global cues for Bypicr and Bypiy, assisting
them in accurately distinguishing and localizing the overall vascular structure.
The structure of each branch is consistent with layers conv3 =z, and convd x
in ResNet-50. The features of support and query samples obtained from B, are
denoted as F3, F9 € REXHXW 'respectively, where a € {thin, thick,all}. H, W
are the height and width of the obtained features, and C' denotes the channels
the features (C' = 256 in this paper). For the support features F%, we follow [6] to
randomly sample N (N = 400 in this paper) multiple representative background
and foreground prototypes P29, P19 € N x C. We then compute the cosine sim-
ilarity between each spatial location (h,w) in FZ and the n-th background and
foreground prototypes:

FiG hw) - Pbg( )
12 G,y w)la - P22 ()12
F4(:,hyw) - P{9(n,:) "
12 G by w)llz - I[P ()

here Q%, Q19 € RN*HXW Then, we adopt two independent decoders, each
composed of a few convolutional layers, to fuse the similarity results:

QY (n,h,w) =
(5)

QL (n,h,w) =

Q%9 = Decoder(Q%,6%), QF9 = Decoder(Q19,619) (6)

A

where QY9,Q19 ¢ RFTXW, and %9 and 619 are the parameters of the decoders.
The final prediction logits Y, can be calculated by a softmax function:

Y, = softmaz(Q% @ Q19) (7)

where Y, € R21XW and & represents the concatenation operation.

2.4 Loss Function

In this paper, we employ Dice loss and Cross-Entropy loss to measure the dis-
tance between predictions and the ground-truth. For thin vessel segmentation,
we compute L{}, and Lf}ﬁi, excluding thick vessel regions. Similarly, for thick
vessel segmentation, thin vessel regions are ignored. The overall loss is:

ice dice ce ice
Liotar = a % ( thzn + Lghin) + ( thzck + Lthzc?c ( at T LZ” ) + Limse (8)
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Fig. 2. Visualization of segmentation results of the proposed method and SOTA.

here we set a= 2.0 to make the model focus more on thin vessels, which more
difficult to be segmented, and L, e is the Mean Squared Error (MSE) loss, which
ensures distinct predictions for thick and thin vessels in the foreground. During
the model inference stage, we combine the outputs of the thick vessel prediction
branch Bypicr and the thin vessel prediction branch Byp;, to obtain the final
vessel segmentation result.

3 Experiments

3.1 Dataset and evaluation metrics

We adopt six public datasets, including: (1) Three color fundus datasets (Color
Fundus): DRIVE (40 samples) [26], STARE (20 samples) [12], and CHASE DBI1
(28 samples) [8]. (2) Two X-ray angiography datasets: XCAD (126 samples)
[18] and XCA (134 samples) [3]. (3) Optical Coherence Tomography Angiog-
raphy ataset [16], which contains two subsets: OCTA _6M (300 samples) and
OCTA _3M (200 samples). We evaluate our method in three cross-domain scenes:
(1) Training on OCTA _3M and testing on XCAD. (2) Training on XCAD and
XCA, and testing on OCTA 3M and OCTA_6M. (3) Training on three color
fundus datasets and testing on XCAD. We adopt common evaluation metrics
in the experiments: Dice Coefficient (Dice), Centerline Dice Coefficient (clDice)
[25], Sensitivity (Sn), Specificity (Sp), and Accuracy (Acc).

3.2 Implementation details

In experiments, each sample is resized to 400 x 400 pixels. We adopt Adam
optimizer (weight decay = 0.00001, batch size = 1) and the initial learning rate
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Table 1. The results of comparison experiments in three cross domain scenes.

Method OCTA_3M — XCAD XCAD/XCA — OCTA_3M/6M Color Fundus — XCAD
clDice Sn Sp  Acc Dice |cIDice Sn Sp  Acc Dice |clDice Sn Sp  Acc Dice
Traditional OOF |[34.22 27.73 96.93 92.94 29.60 |46.64 55.16 93.81 90.56 47.72|34.22 27.73 96.93 92.94 29.60
Hessian| 48.50 45.02 96.94 93.95 45.06|45.41 45.35 96.49 92.28 47.90|48.50 45.02 96.94 93.95 45.06
Generalization| LIOT [50.49 59.21 94.34 92.26 45.96 [39.51 34.79 97.71 92.49 42.81(46.78 62.13 94.07 92.15 46.68
Affinity| 38.27 28.86 98.31 94.29 34.21|41.69 36.76 97.73 92.38 42.71|46.14 47.17 96.95 94.03 46.08
DDG |45.59 36.03 98.32 94.71 41.45|47.89 46.24 96.10 91.94 47.78 |48.63 52.62 96.72 94.13 49.81
VFT - - - - - - - - - - |46.57 63.55 95.84 93.93 46.57
Few-shot CAT |44.68 45.24 96.17 93.17 41.75|48.10 48.08 93.40 89.26 45.09 |42.92 56.44 95.37 93.03 47.22
GMRD|47.82 50.89 96.33 93.67 47.12[49.98 51.80 93.08 89.32 46.87|48.29 54.41 96.29 93.84 48.29
PAMI |46.34 54.86 94.39 92.12 42.92|53.71 53.45 94.47 91.79 46.71|53.70 70.87 92.17 90.88 47.04
DSP |47.95 60.28 94.31 92.30 51.39|51.39 55.77 92.27 89.27 46.41|45.84 81.62 91.36 90.75 45.84
Ours |61.45 65.91 97.04 95.18 60.31|58.28 59.11 94.87 92.52 50.91|57.32 68.00 95.81 94.14 56.18

is 0.001, which is doubled in the first two epochs and then decays exponentially.
The training process lasts for 40 epochs. All experiments are performed on one
NVIDIA 3090 GPU with 24 GB memory, the CUDA version is 11.7 and the
Pytorch version is 13.0. In testing, the support sample is randomly selected, and
the results of each setting are average over three tests. The vessels are divided
into thick and thin following [24] and [30]. When evaluate the final results, since
the outcome from B, is relatively rough compared to Bipin and Bipick, the
results from By, and By, are combined for evaluation.

3.3 Comparison with the state-of-the-arts methods

We compare our method with ten state-of-the-art methods (SOTA), including
the traditional methods: Hessian [7] and OOF [15], the generalization methods:
LIOT [22], Affinity [24], VFT [13], DDG [5], and few-shot methods: CAT [17],
GMRD [6], PAMI [33], DSP [27]. The results are shown in Table 1 and the
visualization results are shown in Fig. 2. The experiments show that our method
surpasses all compared methods across all three settings. In setting 1, it achieves
a Dice of 60.31% and clDice of 61.45%, exceeding SOTAs by 8.92% and 10.96%,
respectively. For setting 2, the method attains a Dice of 50.91% and clDice of
58.28%, outperforming SOTAs by 4.57% and 3.01%. In setting 3, it achieves a
Dice of 56.18% and clDice of 57.32%, surpassing SOTAs by 6.37% and 3.62%.

3.4 Ablation study

We conduct several ablation studies to evaluate each component:
High-frequency auxiliary modality. We conduct experiments in setting
1 and 2 to verify the proposed HFAM. DM-FEF and MBFE modules are adopted.
The experiments include: (1) Only using original images for training (Original).
(2) Adopting saliency detection (Salience) /Laplacian transformed images (Lapla-
cian) to assist feature extraction. (3) The proposed Mixup-based method (Mix).
As shown in Table 2, Mix significantly improves model performance.
Dual-modal feature extraction and fusion module. We conduct ex-
periments to evaluate the DM-FEF module. The HFAM and MBFE module
is adopted. The experiments include: (1) We adopt small kernels with sharing
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Table 2. The ablation study of three components: HFAM, DM-FEF and MBFE.

Method OCTA_3M — XCAD XCAD/XCA — OCTA_3M/6M
cIDICE Sn Sp  Acc Dice |[cIDICE Sn Sp  Acc Dice
HFAM | Original | 56.75 61.43 95.95 93.91 52.66| 53.21 54.29 93.61 90.39 47.53
Salience | 56.26 66.16 95.46 93.68 53.61| 54.25 55.37 93.09 89.65 49.26
Laplacian| 58.09 66.48 95.88 94.13 55.59 | 55.42 54.91 93.87 90.40 50.56

Mix 61.45 65.91 97.04 95.18 60.31| 58.28 59.11 94.87 92.52 50.91
DM-FEF| Sharing | 57.69 60.79 96.38 94.24 54.21| 55.69 56.78 93.50 92.49 49.13
Individual| 54.88 65.90 95.72 93.95 55.62| 56.24 57.08 94.41 91.51 48.47

Multi 61.03 63.73 96.80 94.83 57.73| 57.16 58.12 94.74 92.32 50.23
DM-FEF | 61.45 65.91 97.04 95.18 60.31| 58.28 59.11 94.87 92.52 50.91
MBFE | Single | 52.42 54.41 96.29 93.84 49.47| 51.57 52.26 93.86 90.08 48.85
Two 59.32 62.57 96.67 94.63 56.37| 54.68 55.93 94.79 92.33 49.14
MBFE | 61.45 65.91 97.04 95.18 60.31| 58.28 59.11 94.87 92.52 50.91

parameters (Sharing)/ individual parameters (Individual). (2) We adopt multi-
scale kernels in two branches with individual parameters (Multi). (3) The pro-
posed DM-FEF module. As shown in Table 2, DM-FEF achieves the best results.

Multi-branch feature extraction. The experiments include: (1) Adopt-
ing a single branch to segment all vessels (Single). (2) Adopting two branches
to segment thin and thick vessels without B,y (Two). (3) The proposed MBFE
module. As shown in Table 2, through enabling the model to distinguish thin
and thick vessels, clDice improves by 6.90% and 3.11% and Dice increases 6.90%
and 0.29%, respectively. B, enhances the performance, with clDice further in-
creasing 2.13% and 3.94% and Dice improving by 3.94% and 1.77%, respectively.

Overall framework. We exhibit the ablation study of the overall framework
in OCTA 3M — XCAD, shown in Table 3. Considering the proposed method is
based on multi-descriptors, we use results of GMRD [6] as the baseline results.
Compared to baseline, the performance of the proposed method shows significant
improvement with clDice increasing by 13.63% and Dice improving by 13.19%.

Table 3. The ablation study of the overall framework.

Baseline HFAM DMFE-FM MBFE|clDice Sn Sp  Acc Dice
Vv 47.82 50.89 96.33 93.67 47.12
4 V4 51.53 53.61 96.11 93.58 48.04
Vv N4 V4 52.42 54.41 96.29 93.84 49.47
Vv v | 56.75 61.43 95.95 93.91 52.66
4 N4 Vv v/ |61.45 65.91 97.04 95.18 60.31

4 Conclusion

In this work, we propose a novel multi-branch framework for few-shot cross-
domain vessel segmentation. The framework introduces High-Frequency Auxil-
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iary Modality (HFAM) to highlight vessel-related regions, eliminating the texture
gap in cross domain scenes. Meanwhile, a Dual-Modal Feature Extraction and
Fusion (DM-FEF) module is proposed to capture the modality-specific features.
To mitigate the negative impact of thickness variations in different vessel types,
we proposed a Multi-Branch Feature Extractor (MBFE) to equip the model
with the ability to perceive vessel thickness. Experiments on six public datasets
demonstrate the superiority of our method.
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