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Abstract. Vision-Language Models (VLMs) are becoming increasingly
popular in the medical domain, bridging the gap between medical im-
ages and clinical language. Existing VLMs demonstrate an impressive
ability to comprehend medical images and text queries to generate de-
tailed, descriptive diagnostic medical reports. However, hallucination—the
tendency to generate descriptions that are inconsistent with the visual
content—remains a significant issue in VLMs, with particularly severe
implications in the medical field. To facilitate VLM research on gas-
trointestinal (GI) image analysis and study hallucination, we curate a
multimodal image-text GI dataset: Gut-VLM. This dataset is created
using a two-stage pipeline: first, descriptive medical reports of Kvasir-v2
images are generated using ChatGPT, which introduces some halluci-
nated or incorrect texts. In the second stage, medical experts systemati-
cally review these reports, and identify and correct potential inaccuracies
to ensure high-quality, clinically reliable annotations. Unlike traditional
datasets that contain only descriptive texts, our dataset also features tags
identifying hallucinated sentences and their corresponding corrections. A
common approach to reducing hallucination in VLM is to finetune the
model on a small-scale, problem-specific dataset. However, we take a dif-
ferent strategy using our dataset. Instead of finetuning the VLM solely
for generating textual reports, we finetune it to detect and correct hallu-
cinations, an approach we call hallucination-aware finetuning. Our results
show that this approach is better than simply finetuning for descriptive
report generation. Additionally, we conduct an extensive evaluation of
state-of-the-art VLMs across several metrics, establishing a benchmark.
Dataset and code available: bhattarailab/Hallucination-Aware-VLM.
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1 Introduction

Gastrointestinal (GI) diseases affect millions of people globally, making an accu-
rate and timely diagnosis crucial for effective patient care |2|. GI endoscopy is the
gold standard tool for diagnosing gastrointestinal diseases and is widely adopted
in clinical settings. In recent years, Artificial Intelligence (AI) has shown signif-
icant potential in assisting clinicians with disease understanding and decision-
making by detecting conditions [24], classifying anatomical landmarks |7], and
identifying anomalies [28}29]. While AI models primarily rely on endoscopic
images, integrating descriptive text enhances expressiveness and interpretabil-
ity, providing a richer clinical context that enables informed clinical decision
making, diagnostic support, quality assurance, communication, medical record
documentation, and more [17,23,[30]. Nevertheless, despite the importance of
textual information, its practical usage remains limited due to the lack of such
multimodal datasets containing both GI endoscopic images and descriptive texts.

Several medical image-text datasets exist for chest X-rays images, histopathol-
ogy images, and other radiographs [32], enabling the development of VLMs for
clinical applications [33]. Unlike other image-only AI tools, VLMs are inherently
good at absorbing complex information, reasoning, and generating explanations
that are comprehensive for both clinicians and patients. Although several GI
image and video datasets exist [5}/8[14,/27,|38|, to the best of our knowledge,
Kvasir-VQA [10] is the only existing text-image multimodal dataset for GI im-
age analysis, but it has notable limitations. Its short textual responses limit the
depth of expert analysis and do not fully accommodate specialized medical vo-
cabulary. Moreover, this dataset lacks comprehensive validation of all samples
by certified experts, attributed to time constraints.

To mitigate these shortcomings, we create a new multimodal dataset out of
Kvasir-v2 images, describing the underlying conditions in a short descriptive re-
port format. Instead of having experts manually annotate images from the start,
we first leverage an existing commercial large VLM (ChatGPT-4 Omni [1]) to
generate image descriptions by prompting it with expert-crafted questions, which
serves as a cost-effective and time-efficient alternative. Studies show that Chat-
GPT, trained on vast internet data, demonstrates a reasonable understanding of
medical prompts and performs decently on some evaluations |16}31]. However,
like any other language models, VLMs are prone to hallucinations and cannot
be relied upon without certified expert supervision.

Hallucination, in this context, refers to instances where the model produces
information that appears plausible but is factually incorrect or fabricated |3}/11].
VLMs generate outputs in an auto-regressive manner, predicting the next plau-
sible token based on statistical patterns. However, this process can introduce
biases, as predictions tend to favor patterns that are most frequently observed
in the training data rather than being grounded in factual knowledge. A recent
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study indicates that the state-of-the-art (SOTA) large VLMs exhibit a halluci-
nation rate up to 30% when describing natural images |11]. Hallucination can
be more severe in medical data, as demonstrated by our dataset (Fig. , where
only 30.39% of the VLM-generated responses are fully correct. To address this
issue, in the second stage, we employ expert gastroenterologists to analyze the
images and responses generated by ChatGPT, identify potential hallucinations,
and correct any inaccuracies, ensuring that the final response is accurate and
reliable. As a result, we obtain expert feedback on where the VLM hallucina-
tion has occurred at the sentence level and what the corrected version is. This
additional information in the dataset can be leveraged to develop hallucination
detectors or create hallucination-aware models.

Some studies in educational psychology suggest that students learn effec-
tively when actively engaged in correcting errors and self-reflecting rather than
through passive learning [25]. We argue that training VLM to identify and cor-
rect hallucinations fosters learning through correction, similar to how humans
learn. Our hallucination-aware strategy for finetuning VLMs is rooted in this
motivation.

While several datasets and studies on hallucination in natural image-text
scenarios have recently emerged |3], there have been very few attempts to explore
this phenomenon within the medical domain [6[15], and none specifically in GI
analysis. Therefore, in this work, we propose a hallucination-aware multimodal
dataset, Gut-VLM, for GI image analysis using Kvasir-v2 images, one of the most
widely used GI image datasets, to facilitate research on the clinical applications
of VLMs and study hallucinations. Our key contributions are:

1. We create a novel multimodal image-text dataset for GI image analysis,
consisting of VLM-generated descriptive diagnostic reports, expert-labeled
tags identifying hallucinated sentences, and their corresponding corrections.

2. We provide an extensive evaluation benchmark on four SOTA VLMs across
various settings, using both existing and our proposed LLM-assisted evalu-
ation metrics, alongside a clinical expert evaluation.

3. We demonstrate that our innovative hallucination-aware finetuning approach,
trained to detect and correct hallucinations, improves test performance com-
pared to finetuning only on corrected ground-truth responses.

2 Methodology

In this section, we introduce the Gut-VLM dataset, detailing its overall com-
position and outlining the annotation pipeline, and present some key dataset
statistics, particularly focusing on VLM-induced hallucinations. Finally, we also
present a hallucination-aware VLM finetuning strategy.

2.1 Dataset Composition

The images in the Gut-VLM dataset are sourced from Kvasir-v2 [27], covering a
diverse set of normal and abnormal gastrointestinal conditions. Normal findings
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include images of healthy Cecum (321), Pylorus (298), and Z-line anatomy (418),
while abnormal findings include images of Polyps (185), Esophagitis (70), Ulcer-
ative Colitis (180), Dyed-resection-margins (172), and Dyed-lifted-polyps (172).
In total, we annotated 1,816 images representing these conditions, splitting them
into 1,450 for training and 366 for testing. Instead of randomly splitting the en-
tire dataset into training and test sets, we ensured proportional representation
of each condition in the test set by allocating 20% of samples from each category
to the test set.
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Fig. 1. Top: Overview of the data annotation pipeline. Bottom: [Left] A sample from
the Gut-VLM, describing the underlying conditions based on the questions asked in
the prompt, showing hallucinated (red) and corrected texts (green). [Right| Statistics
of ChatGPT-4 Omni-generated responses in the dataset.

2.2 Dataset Annotation Pipeline

In this section, we outline the multistep pipeline used to generate the final an-
notated dataset, as illustrated in Fig. 1} This innovative, cost-effective approach
involves using a large VLM to generate descriptive diagnostic reports for images,
followed by expert corrections to produce verified reports. The report is further
parsed to extract diagnostic Q&A for fine-grained evaluation.

VLM Diagnostic Report Generation: To generate a descriptive report for
each image in our dataset, we queried ChatGPT-4 Omni to describe each
image using a prompt designed to elicit a detailed response covering the con-
tents of 12 diagnostic reference questions for gastrointestinal image assessment.
These questions, part of the MedVQA-GI Challenge [12|, address aspects such
as anatomical class, color and position of landmarks and abnormalities, polyp
count, and the presence of inflammation, bleeding, foreign bodies, infection, or
instruments. Since the generated responses contained some hallucinated texts,
we proceeded to the next step to identify and correct these hallucinations.
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The VLM-generated responses are reviewed by expert gastroenterologists to
identify hallucinations. Following the M-HalDetect framework [11], each sentence
in the response was labeled to indicate whether it contained hallucinated text. A
sentence is marked as <non-hallucinated>> if it accurately describes the content
in the image, while any sentence containing inconsistent information is marked as
<hallucinated >. Fig. [[| presents the corresponding hallucination statistics for the
overall dataset: only 30.39% of the responses were fully correct, 1.7% contained
hallucinations in all sentences, and 67.84% consisted of mixed responses with
correct and hallucinated sentences. Finally, experts corrected incorrect sentences
to ensure the clinical accuracy of descriptions. These annotations were collected
using our in-house developed annotation tool and involved four experts.
Diagnostic Q& A Extraction for Fine-Grained Evaluation: While diag-
nostic reports are more comprehensive and context-rich, to objectively evaluate
performance at a fine-grained level, we must assess whether the descriptions
accurately address the 12 diagnostic questions. To achieve this, we prompted
ChatGPT to extract information from the generated descriptive responses into
a structured Q&A format. This method was also applied to extract diagnostic
Q&A for other VLMs during testing. For the ground-truth responses, we man-
ually verified the extracted diagnostic Q&A to ensure accuracy. We observed a
hallucination rate of 4.29% during the information extraction process from the
corresponding descriptive responses. As the same extractor was applied to all
models during evaluation, the hallucination impact should be consistent across
models. Additionally, since the results are available in a structured Q&A format,
this data can also be utilized for Visual Question Answering (VQA) experiments.

2.3 Hallucination-aware VLM Finetuning

A standard VLM finetuning approach for generating descriptions would be to
train the model to output the ground-truth texts. However, since we have the
VLM-generated response, sentence-level hallucination tags, and the final cor-
rected response, we instead finetune the model to identify hallucinated sentences
and correct the response, as shown in Fig. 2] In Step 1, the model is trained to
identify hallucinations and label the output as either <hallucinated> or <non-
hallucinated>. In Step 2, it learns to revise hallucinated sentences and generate
a corrected response. This approach leverages the existing VLM responses and
makes the model aware of potential hallucination patterns.

3 Experiments

Using our proposed dataset, we experimented with four state-of-the-art (SOTA)
VLM models: LLaVA-1.6-7B [22], Qwen2-7B [36], mPLUG-Owl-2B [37], and
DeepSeek-7B-VL [19]. We first generated descriptive reports by prompting the
pretrained models to describe images with a focus on 12 diagnostic questions.
Next, we applied supervised finetuning using Rank-8 LoRA adaptation [13] with
two strategies. In the first strategy, we finetuned the model to generate corrected



6 B. Khanal et al.

An image of pylorus. There is a reddish abnormality at
the center. No polyps, bleeding, inflammation, or
infection are observed, and no instruments or foreign
bodies are present. Anatomical landmarks are present
and typically pink in color.

IMAGE GPT-GENERATED RESPONSE

Vision Language Model

STEP 1: Identify Hallucination
An image of pylorus.<hallucinated> There is a reddish abnormality at the center.
<hallucinated> No polyps, bleeding, inflammation, or infection are observed, and no
instruments or foreign bodies are present. <non-hallucinated>Anatomical landmarks are
pink in color. <non-hallucinated>

Vision Language Model

An image of z-line. No
abnormalities, polyps,
bleeding, inflammation, or
infection are observed, and no
instruments or foreign bodies
are present. Anatomical
landmarks are pink in color.

STEP 2: Correct Response
An image of z-line. No abnormalities, polyps, bleeding, inflammation, or infection are
observed, and no instruments or foreign bodies are present. Anatomical landmarks are
pinkin color.

(a) Standard Finetuning (b) Hallucination-aware Finetuning

Fig. 2. Comparing standard finetuning with hallucination-aware finetuning

responses directly. In the second strategy, we finetuned the model to learn to
detect hallucinated sentences and then correct them—the approach we refer to
as hallucination-aware (H) fine-tuning.

As outlined in Section [2.2] since the dataset was already structured in a VQA
format for fine-grained evaluation, we explicitly experimented with one of the
models, LLaVA-1.6-7B, on a VQA task. We first tested the pretrained model,
then applied standard VQA finetuning in a multi-conversational format.

All models were finetuned using an A100 GPU for five epochs until the loss
stabilized, with a batch size of 8 and a learning rate of le-4, and evaluated on
the test set. We used the ms-swift framework El to run all VLM experiments.

4 Evaluation

We initially assess VLM-generated reports against corrected ground-truth de-
scriptions using classical metrics such as ROUGE-L , BLEU , and ME-
TEOR [4], which measure sequence overlap, n-gram matches, and semantic sim-
ilarity, respectively. However, these metrics are limited by context-length depen-
dence, insensitivity to subtle semantic differences, and inability to assess factual
accuracy. Here, we propose two LLM-assisted evaluation metrics.

The first, R-Sim, rates coarse-level semantic similarity between the ground-
truth texts and VLM-generated texts on a scale from 1 to 5 (worst to best), using
ChatGPT. We provide both texts and prompt ChatGPT to assess their similar-
ity by focusing on 12 GI diagnostic questions from the MedVQA-GI Challenge
as a reference for judgment. A score of 5 indicates a high degree of semantic
alignment with the ground-truth, while a score of 1 reflects significant diver-
gence in meaning. Such LLM-assisted evaluations have been reported in recent

§ https://github.com /modelscope/ms-swift
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studies [20]. The second metric, Question Answering Accuracy Score (QAAS),
quantitatively evaluates how accurately VLM-generated responses answer the 12
diagnostic questions. We begin by extracting the answers to these questions from
the VLM responses using ChatGPT, following the procedure as in Section [2.2
These extracted answers are then compared to the corresponding ground-truth
answers in Q&A pairs, with ChatGPT handling variations in wording, such as
synonyms or paraphrasing. If ChatGPT determines that the answer matches the
ground-truth, it is marked as correct; otherwise, it is marked as incorrect. The
overall QAAS is simply calculated as the ratio of the total number of correct
answers to the total number of questions.

We had an expert rate LLaVa’s descriptive responses for clinical evaluation.
Due to budget constraints, we randomly sampled 30 responses per model and
asked the expert to provide two ratings (1 to 5): similarity, assessing the clinical
resemblance of the response to the ground truth, and quality, evaluating its clin-
ical significance independently. We averaged the two ratings to compute a final
per-response score. Additionally, a new sample was randomly inserted among the
30 responses five times, unknown to the expert, to measure rating consistency.

5 Results

Descriptive Format Diagnostic Report: Table [I] presents the quantitative
evaluation of descriptive reports generated by VLMs for GI images. All pre-
trained models exhibited significantly lower performance in terms of ROUGE-L,
BLEU, METEOR, R-Sim, and QAAS scores, demonstrating a limited ability
to generate clinically relevant descriptions—except for ChatGPT-4 Omni. Since
ChatGPT-4 is a large-parameter model and the ground-truth descriptions are
corrected versions of the original ChatGPT responses, higher scores are expected
due to potential bias toward the original structure.

There was a notable improvement across all metrics when finetuning VLMs
with ground-truth texts. However, the hallucination-aware finetuning (finetuned™)
outperformed the standard finetuning, suggesting that training the model to
detect and correct hallucinations leads to improved performance and produces
more reliable, context-aware models. For instance, the LLaVA-1.6-7B finetuned™
achieved a QAAS score of 90.89%, compared to 83.07% for its standard finetuned
counterpart and only 50.89% for pretrained version. Similarly, R-Sim improved
from 1.36 (pretrained) to 3.71 (standard finetuning), with further improvement
to 3.96 through hallucination-aware finetuning, demonstrating a more accurate
semantic alignment with expert-generated descriptions. We could not finetune
ChatGPT-4 Omni as it is not an open-source model. We also evaluated QAAS
across different aspects as depicted in Fig. [8] which shows that hallucination-
aware training consistently outperforms standard training across most aspects.

Expert Evaluation: For LLaVa-1.6-7B, the average scores are 1.90 (pretrained),
3.24 (finetuned), and 3.36 (hallucination-aware finetuned), with the latter scoring
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Table 1. Quantitative evaluation of various VLMs in descriptive report generation and
VQA tasks. Finetuned™ indicates hallucination-aware finetuning.

Model ROUGE-LT BLEUt METEORT R-Sim? QAAS(%) 1
ChatGPT-4 Omni 0.87 0.80 0.89 2.97 85.99
LLaVa-1.6-7b pretrained 0.26 0.10 0.47 1.36 50.89
LLaVa-1.6-7b finetuned 0.54 0.35 0.63 3.71 83.07
LLaVa-1.6-7b ﬁnetunedH 0.89 0.82 0.90 3.96 90.89
DeepSeek7b pretrained 0.29 0.11 0.39 1.65 65.20
DeepSeek7b finetuned 0.55 0.37 0.65 3.76 83.73
DeepSeek7b finetuned™ 0.88 0.81 0.90 3.63 88.77
QwenT7b pretrained 0.32 0.12 0.48 1.74 67.57
Qwen7b finetuned 0.54 0.37 0.64 3.78 83.27
Qwen7b finetuned™ 0.88 0.82 0.90 4.04 90.53
MPlugOwl12b pretrained 0.26 0.09 0.44 1.34 55.29
MPlugOwl2b finetuned 0.50 0.32 0.60 3.68 82.90
MPlugOwl2b finetuned™ 0.85 0.77 0.87 3.72 88.40
VQA LLaVa-1.6-7b pretrained  — — — — 49.26
VQA LLaVa-1.6-7b finetuned - — - — 87.91

= LLaVa7b-pretrained = DeepSeek7b-pretrained = Qwen-pretrained

W LlaVa7b-finetuned mmm DeepSeek7b-finetuned mmm Qwen-finetuned

B LlLaVa7b-finetuned (Hal-A ) mmm D 7b-finetuned (Hal-A ) mm Q i ed (Hal-A )

Anatomical class

Abnormality/Landmark

Position/Location

Medical Findings

i

Polyp Numbers

Fig. 3. Comparison of VLM responses evaluated across different aspects

the highest. We also computed the rater’s average coefficient of variation us-
ing the stand-out sample and found it to be 11.41%, indicating fair consistency.

Visual Question Answering (VQA) Evaluation: Table [I] also summarizes
the performance of LLaVA-1.6-7B in VQA task. We focus on QAAS, as other
metrics are mainly applicable only for description comparison. The pretrained
models struggled to answer expert-designed questions effectively, achieving sig-
nificantly lower QAAS, while finetuning substantially improved the performance.

6 Discussion and Conclusion

Here, we introduced Gut-VLM, a multimodal dataset for GI image analysis that
includes hallucination-aware annotations to advance research on reliable and



Hallucination-Aware Multimodal Benchmark for GI Image Analysis 9

trustworthy VLMs. Our annotation process of using VLM-generated descriptive
diagnosis reports, followed by expert corrections, not only reduces annotation
costs by avoiding the need to hire experts for routine annotation from start but
also enables the creation of a dataset with tags identifying potential hallucination
patterns. We argue that by formulating VLM finetuning tasks as hallucination
detection and correction rather than just diagnostic report generation, we can
elicit reasoning in VLMs, similar to how engagement via error identification and
correction enhances learning in humans compared to passive learning.

This work also has some limitations. Budget constraints led to corrections be-
ing limited to responses from a single VLM (ChatGPT), potentially introducing
bias toward its response structure. Additionally, our dataset offers sentence-level
hallucination tags, which may limit granularity. We will expand the dataset by
incorporating diverse VLM responses, annotating segment-level hallucination
tags, and extending the dataset to include diverse demographics.

Future research could explore alternative hallucination detection and miti-
gation strategies, such as uncertainty estimation [9], reinforcement learning |11],
architectural modifications [21], and feature fusion [34]. We also highlight the
need for standardized benchmarks in the medical domain to accurately assess
hallucinations and ensure reliable model evaluation, as well as ways to test the
statistical significance of performance and its relevance to diagnosis.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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