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Abstract. Biomedical visual question answering (VQA) has been widely
studied and has demonstrated significant application value and potential
in fields such as assistive medical diagnosis. Despite their success, current
biomedical VQA models perform multimodal information interaction
only at the model level within large language models (LLMs), leading to
suboptimal multimodal semantic alignment when dealing with complex
tasks. To address this issue, we propose BioD2C: a novel Dual-level Se-
mantic Consistency Constraint Framework for Biomedical VQA, which
achieves dual-level semantic interaction alignment at both the model
and feature levels, enabling the model to adaptively learn visual features
based on the question. Specifically, we firstly integrate textual features
into visual features via an image-text fusion mechanism as feature-level
semantic interaction, obtaining visual features conditioned on the given
text; and then introduce a text-queue-based cross-modal soft semantic
loss function to further align the image semantics with the question se-
mantics. Specifically, in this work, we establish a new dataset, BioVGQ,
to address inherent biases in prior datasets by filtering manually-altered
images and aligning question-answer pairs with multimodal context, and
train our model on this dataset. Extensive experimental results demon-
strate that BioD2C achieves state-of-the-art (SOTA) performance across
multiple downstream datasets, showcasing its robustness, generalizabil-
ity, and potential to advance biomedical VQA research. The source code
of this work and the BioVGQ dataset can be accessed through code and
dataset.
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1 Introduction

Biomedical VQA aims to design and develop systems capable of understand-
ing biomedical images and generating relevant answers based on given textual
instructions.

† Corresponding author.

https://github.com/jzy-123/BioD2C
https://huggingface.co/datasets/jzyang/BioVGQ
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Fig. 1: (a) and (b) illustrate the performance of the model-level interaction frame-
work and BioD2C under image-related questions, respectively. Red text repre-
sents incorrect answers, while green text represents correct answers.

In real clinical scenarios, question texts often refer to specific elements within
an image. Therefore, achieving optimal semantic alignment between the image
and the text instruction, i.e., the model should focus on the image regions cor-
responding to the textual query, becomes the key to the success of biomedical
question answering models. However, existing biomedical models [26,12,18,24]
extract visual and textual features independently using separate visual encoders
and text embedding layers, relying solely on LLMs for model-level multimodal
semantic interaction, and lacking semantic alignment at the feature level.

To address these challenges, we propose BioD2C, a novel dual-level semantic
consistency constraint framework for biomedical VQA, as illustrated in Fig. 2.
Compared to existing VQA models, BioD2C employs a novel image-text fusion
mechanism for feature-level multimodal semantic interaction after extracting im-
age and text features, obtaining image features conditioned on the given text.
Furthermore, we introduce a text queue mechanism to project image and text se-
mantics from high-dimensional vector spaces into corresponding probability dis-
tributions. By minimizing the divergence between these distributions, we achieve
quantized alignment of cross-modal semantic representations. Fig. 1 illustrates
this behavior. When faced with complex questions, both baseline models rely
solely on semantic interaction within LLMs, resulting in biased answers, while
BioD2C benefits from semantic alignment at the feature level and produces the
correct answer.

Due to the scarcity of real biomedical data, existing biomedical vision-language
datasets such as PMC-OA [15] and PMC-VQA [26] rely on biomedical papers
publicly available from the PubMedCentral (PMC)’s OpenAccess subset [21],
some of which contain images that differ significantly from real-world biomedical
images. Additionally, when generating question-answer pairs, existing biomedical
visual question-answering datasets often rely solely on image captions or captions
supplemented with visual information, which may cause a misalignment between
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the generated question-answer pairs and the information contained in the im-
ages. As a result, visual question-answering models trained on these datasets
may have an inherent limitation in understanding the images.

To this end, we establish a new dataset, BioVGQ, to address the issues
present in existing datasets. It is based on the existing PMC-based dataset
and integrates multiple public datasets, filtering out images that have under-
gone significant manual manipulation. When generating question-answer pairs,
both the images and their corresponding captions are utilized to ensure a strong
correlation between the question-answer pairs and the images.

Overall, the main contributions of our work are as follows: i) We propose
BioD2C, a dual-level framework that enforces semantic consistency both through
model-level interactions within LLMs and specifically through feature-level image-
text fusion mechanisms, while further optimizing visual-textual alignment via a
cross-modal semantic loss function. ii) BioVGQ, a biomedical VQA dataset with
cleaner images that incorporate contextual information, has been established,
and our model is trained on this dataset. iii) Extensive comparative and ab-
lation experiments demonstrate the superiority of BioD2C over current SOTA
biomedical VQA models in terms of performance and the effectiveness of each
component.

2 The BioVGQ Dataset

Most of the image data in BioVGQ comes from PMC-VQA. To remove images
with low informational content or obvious noise, we manually annotated 3,000
images. We label an image as “polluted” if it has i) more than six sub-figures,
which dilutes useful information, or ii) clearly man-made content such as tables
or hand sketches. All others are “clean”. Using these labeled data, we trained an
image classifier to automate the classification process, ultimately obtaining 77K
clean biomedical images. Specifically, we added an MLP classification head to
the pre-trained image encoder of PMC-CLIP [15] to serve as the image classifier.

For generating biomedical question-answer pairs, we used the ChatGPT-4o
API [10], providing both images and their corresponding captions to ensure
that the generated pairs accurately reflect the image content without deviation.
Further generation details and prompts are as follows:

You are an AI assistant specialized in biomedical topics. Generate 2-3
clinically meaningful open-ended question-and-answer pairs based on the
provided medical image and caption.
Requirements: - Each question must be a single, clear sentence; each an-
swer should directly address it. - Cover overall understanding and specific
details, without copying the caption.
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- Answers must require examining the image, not just medical background
knowledge. - Ensure clinical relevance, professionalism, and conciseness.
- Format: ["question": "xxx", "answer": "xxx", ...]
caption: {caption}, image-url: {image-url}

To enrich the dataset, we incorporated various modalities of biomedical im-
ages, closed-ended questions, and short dialogues, integrating the training splits
of SLAKE [16], Path-VQA [8], and RAD-VQA [11]. As a result, BioVGQ com-
prises 81K medical images and 188K question-answer pairs.

Fig. 2: BioD2C Architecture. Feature-level Interaction: Medical images and
text questions are encoded into features Xv and Xt. A multi-scale enhanced
Xv is fused with Xt via a Transformer decoder, generating Xvt, which is then
combined with Xv through a gating mechanism to produce text-conditioned
features Xv|t. Semantic Loss: A text-queue loss guides Xv|t to align with Xt.

3 Method

3.1 Feature Level Semantic Interaction Mechanism

In this section, we will introduce the technical details of feature-level semantic
interaction through the image-text fusion mechanism.

Text Encoding. Before fusing textual features with image features, we pre-
process the text in two steps. First, the tokenized text sequence T is encoded
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into a meaningful representation X
′

t , defined as X
′

t = ε (T ), where ε represents
the encoding function. Here, we directly use the text embedding layer of the
LLM as the encoding function ε. Next, we use a MLP to map X

′

t into the im-
age feature space, resulting in the final text representation Xt. The overall text
encoding process is expressed as: Xt = MLP (ε (T )).

Image Processing. The visual features output by the vision encoder, Xv ∈
RN×N×D, contain only a single level of granularity, where N represents the num-
ber of image patches and D denotes the feature dimension. To extract multi-
granularity image features, we introduce a multi-scale feature extraction mod-
ule (MFE) that utilizes a divide-and-aggregate strategy, as illustrated in Fig. 2.
Specifically, MFE consists of S different scales. At each scale s ∈ {1, 2, ..., S}, the
feature map is divided into 4s−1 blocks, resulting in a total of M =

∑S
s=1 4

s−1

blocks across all scales. Each 3D feature block undergoes global pooling to pro-
duce a 1D feature. For a block fs,t at scale s, where t ∈

{
1, 2, ..., 4s−1

}
indi-

cates the block index, the global pooling is defined as f
′

s,t = maxpool (fs,t) +
avgpool (fs,t), where maxpool and avgpool represent global max pooling and
global average pooling, respectively. Finally, the pooled features f

′

s,t from all
scales are concatenated to form the multi-scale image feature X

′

v ∈ RM×D. In
the implementation, the number of scales is set to S = 6.

Image-Text Fusion. A 12-layer Transformer decoder achieves cross-modal
fusion by treating text encoding Xt as query and multi-scale image features X

′

v

as key and value, producing the text-contextualized image representation Xvt:

Xvt = Fusion(Xt, X
′
v, X

′
v). (1)

To compensate for the potential loss of original image features during modal-
ity fusion and achieve complementary information across modalities, we intro-
duce a learnable gating mechanism [1,3,6,9]. This mechanism combines the orig-
inal image features Xv with the fused features Xvt by processing them through
a projection layer and an additional projection layer, resulting in the condi-
tioned image features Xv|t . The gating mechanism ensures a gradual fusion of
modality features, avoiding significant feature alteration and overall performance
degradation [5]. It is implemented by multiplying the output of the additional
projection layer with tanh (β), where β is a learnable parameter initialized to
a small positive value. We initialize β to 0.2 to balance initial feature bias and
fusion effectiveness. Mathematically, the fusion module is implemented as:

Xv|t = Proj (Xv) + Projg (Xvt) · tanh (β) , (2)

then Xv|t is input into the LLM together with the text token sequence T .

3.2 Text-queue-based Cross-modal Semantic Loss function

Through the above procedure, we obtain the visual features conditioned on the
text, but lack an optimization objective to guide the model toward optimal
multimodal semantic alignment at the feature level. Inspired by ALBEF [13]
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and MoCo [7], we propose a text-queue-based cross-modal semantic loss function,
which applies a soft constraint to align visual semantics with text semantics. The
core idea is to map the semantics from the high-dimensional vector space to a
probability distribution through similarity computation. Specifically, we extract
k text samples semantically related to the image either from its corresponding
caption or by retrieving from an existing knowledge base, where we set k to
30. These texts undergo the text encoding process in Section 3.1 to obtain the
text queue Qt = {ti}ki=1, where ti denotes the ith text sample. By calculating
the cosine similarity between Xv|t , Xt, and the elements in Qt, we derive the
semantic distributions of fused image and text features, denoted as p (v) and
p (t), respectively. The semantic distribution p (v) is computed as:

p (v) =

{
exp

(〈
Xv|t , ti

〉
/τ

)∑k
j=1 exp

(〈
Xv|t , tj

〉
/τ

)}k

i=1

, (3)

where ⟨·, ·⟩ represents the calculation of cosine similarity, and τ is the tem-
perature coefficient. Similarly, p (t) can be computed. Using p (v) and p (t), we
minimize the Kullback-Leibler (KL) divergence between these two distributions
to align the semantics of image and text features, expressed as:

Lsem = DKL (p (v) ||p (t)) , (4)

where Lsem represents the semantic loss between images and text, and DKL

denotes the KL divergence. During training, the semantic loss Lsem is combined
with the commonly used sequence negative log-likelihood loss Lnll [22] to jointly
optimize the model for the best performance. The final loss function used for
training the model is defined as:

Ltotal = λ · Lsem + Lnll, (5)

where λ is a hyperparameter that controls the weight of the semantic loss.

4 Experiments

4.1 Implementation Details

In this work, we employ a two-stage training strategy to train our model, enabling
it to adapt to biomedical VQA tasks. Stage 1: Projectors are independently
trained to align visual features with language embeddings using 467k image-
caption pairs from the LLaVA-Med dataset [12]. During this stage, λ = 0 in
Eq. 5, disabling semantic loss due to limited textual diversity. Stage 2: The
LORA adapters are fine-tuned on the BioVGQ dataset to improve BioD2C’s
multimodal understanding, with λ = 1 in Eq. 5, fully incorporating semantic
loss to optimize performance.

We train our models using the AdamW [17] optimizer. To accelerate train-
ing, we employ the Deepspeed strategy along with Automatic Mixed Precision
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Dataset Metric BioMedGPT LLaVA-Med-1.5 MedVInT-TD RadFM BiMediX2-8B BioD2C

SLAKE
closed ACC ↑ 0.248 0.536 0.498 0.752 0.831 0.763
opened ACC ↑ 0.259 0.334 0.338 0.725 0.729 0.742

BLEU-1 ↑ 0.175 0.002 0.213 0.746 0.778 0.766
ROUGE-1 ↑ 0.26 0.413 0.351 0.695 0.786 0.810

RAD-VQA
closed ACC ↑ 0.545 0.547 0.475 0.577 0.725 0.734
opened ACC ↑ 0.14 0.276 0.195 0.335 0.305 0.310

BLEU-1 ↑ 0.033 0.021 0.125 0.475 0.552 0.520
ROUGE-1 ↑ 0.372 0.342 0.235 0.438 0.565 0.588

Path-VQA
closed ACC ↑ 0.512 0.621 0.454 0.505 0.872 0.918
opened ACC ↑ 0.053 0.036 0.022 0.005 0.282 0.291

BLEU-1 ↑ 0.021 0.011 0.013 0.257 0.587 0.620
ROUGE-1 ↑ 0.287 0.116 0.034 0.221 0.593 0.628

Average 0.242 0.271 0.246 0.453 0.616 0.641

Table 1: Comparison of performance with SOTA models on different benchmarks.
The best performance is highlighted in bold, while the second-best is underlined.

(AMP) [4] and gradient checkpointing. Set the learning rates for the first and
second training stages to {5e− 5, 2e− 5}, and train for 1 epoch and 5 epochs,
respectively. For more details on hyperparameter settings, please refer to the
BioD2C GitHub page. All models are implemented in PyTorch and trained on
four NVIDIA 4090 GPUs with 24 GB of memory each. In terms of model con-
struction, PMC-CLIP and PMC-LLaMA [23] are selected as the visual encoder
and LLM, respectively.

4.2 Datasets and Metrics

The BioVGQ dataset is split into training, validation, and testing sets in an
8:1:1 ratio for model training and evaluation. To validate the effectiveness of
BioD2C, we evaluate it on SLAKE, Path-VQA, and RAD-VQA datasets. For
ablation studies and visualization analyses, we primarily use the BioVGQ test
set to examine the effectiveness of different modules.

We use closed-ended question accuracy(ACC), open-ended question ACC,
BLEU-1 score [20], and ROUGE-1 score [14] to comprehensively evaluate the
model’s performance on downstream datasets. Additionally, as BioVGQ pri-
marily contains long-text answers, ChatGPT4 [2] is employed to evaluate the
reasonableness, accuracy, and similarity of the model’s responses compared to
the ground truth. A comprehensive score ranging from 0 to 10 is provided, with
higher scores indicating better model performance.

4.3 Comparison with SOTAs

We compare the proposed BioD2C with SOTA models in the biomedical visual
question answering domain, including BioMedGPT [25], LLaVA-Med-1.5, Med-
VInT [26], RadFM [24], and BiMediX2-8B [19]. The results are shown in Table 1.
BioD2C outperforms current SOTA models on most metrics, achieving the high-
est average score of 0.641, which is a 4.06% improvement over the second-best
model, BiMediX2-8B.
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BLEU-1 ROUGE-1 GPT score/10 Average

BioD2C w/o Lsem 0.408 0.443 0.623 0.491
BioD2C w/o fm 0.371 0.428 0.591 0.463
BioD2C w/o BioV GQ 0.324 0.332 0.483 0.380
BioD2C 0.427 0.494 0.649 0.523

Table 2: The performance of BioD2C and its variants on the BioVGQ test set.

Fig. 3: Visualization of the attention map of the input image.

4.4 Ablation Study

In this section, we conduct ablation studies to analyze the impact of different
model configurations on its performance in biomedical question answering tasks.
Specifically, we investigate the following three scenarios, i) w/o Lsem: not using
semantic loss, ii) w/o fm: directly using the visual encoder’s output as the
image vector for LLMs multimodal input without the fusion mechanism, and iii)
w/o BioV GQ: using the PMC-VQA dataset instead of BioVGQ in the second
training stage. The results of the ablation studies are shown in Table 2.

4.5 Visualization Analysis

In this section, by visualizing the attention maps, we show how the model focuses
on specific regions of the image based on textual instructions. The left figure in
Fig. 3 compares the performance of BioD2C and the baseline model. While both
understand abstract image concepts, BioD2C accurately focuses on image regions
for correct answers, while the baseline model’s answers deviate due to multi-
modal alignment issues. The right figure illustrates the dynamic nature of the
model’s attention: as the text prompt changes, the attention shifts to different
image regions. For example, when the question mentions “black arrow”, the
model’s attention focuses on the area near the black arrow. When the prompt
changes to “two wires”, the model shifts its attention to the region where the
wires are located.
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5 Conclusion

In this work, we propose BioD2C, a dual-level semantic interaction biomedical
VQA framework, which achieves dynamic alignment of visual features to tex-
tual features at the feature level through an image-text fusion mechanism. A
cross-modal semantic loss function is employed to further optimize multimodal
semantic alignment at the feature level. The framework is trained on BioVGQ,
a curated dataset consisting of 81K images and 188K question-answer pairs. Ex-
tensive experiments demonstrate that, compared to baselines that independently
extract visual and textual features, BioD2C can dynamically focus on specific
regions of the image based on the text, achieving SOTA performance. BioD2C
shows strong potential for clinical decision support, with future work targeting
multi-modal integration and broader medical applications.
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