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Abstract. Fully-supervised lesion recognition methods in medical imag-
ing face challenges due to the reliance on large annotated datasets, which
are expensive and difficult to collect. To address this, synthetic lesion
generation has become a promising approach. However, existing mod-
els struggle with scalability, fine-grained control over lesion attributes,
and the generation of complex structures. We propose LesionDiffusion,
a text-controllable lesion synthesis framework for 3D CT imaging that
generates both lesions and corresponding masks. By utilizing a struc-
tured lesion report template, our model provides greater control over
lesion attributes and supports a wider variety of lesion types. We intro-
duce a dataset of 1,505 annotated CT scans with paired lesion masks
and structured reports, covering 14 lesion types across 8 organs. Lesion-
Diffusion consists of two components: a lesion mask synthesis network
(LMNet) and a lesion inpainting network (LINet), both guided by lesion
attributes and image features. Extensive experiments demonstrate that
LesionDiffusion significantly improves segmentation performance, with
strong generalization to unseen lesion types and organs, outperforming
current state-of-the-art models. Code is available at lhere.
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1 Introduction

Deep learning has driven significant advances in medical image analysis, espe-
cially in lesion detection and diagnosis [9T1]. However, current fully-supervised
lesion recognition methods rely heavily on large annotated datasets, which are
costly to collect and share due to privacy concerns.

To address the scarcity of lesion data, synthetic lesion generation has emerged
as a promising solution. In 3D CT imaging, techniques such as GANs [4], diffu-
sion models [T66], and physical simulations have been used to generate synthetic
lesions for various conditions, including lung nodules [10], COVID-19 [21], and
liver tumors [7]. However, these methods train each lesion type independently,

1 Contributed equally to this work.


https://github.com/HengruiTianSJTU/LesionDiffusion

2 W. Lei and H. Tian et al.

which limits their scalability and generalizability. Additionally, they lack fine-
grained control over lesion attributes, and are primarily designed to simulate
solid lesions, neglecting complex structures such as hollow lesions found in col-
orectal or gastric cancers [2]. This makes them hard to serve as a general-purpose,
controllable 3D CT lesion synthesis model.

In this work, we aim to develop a general, text-controllable lesion synthesis
model for 3D CT imaging that generates both lesions and their corresponding
masks. Our approach addresses the limitations of previous lesion synthesis meth-
ods, which include: 1) the limited variety of lesion types, primarily due to the
scarcity of publicly available CT datasets that include both lesion descriptions
and corresponding masks; 2) insufficient control over lesion attributes; and 3)
the challenges in generating complex lesion textures and masks.

To overcome these limitations and enhance the generalizability and control-
lability of lesion synthesis, we adopt a structured lesion report template, as pro-
posed in [?], to serve as the textual condition. This template, which covers various
aspects of lesion attributes (as illustrated in Fig. (1)), enables precise control over
lesion mask generation and corresponding image inpainting based on specified
attributes. Additionally, we have collected and annotated 1,505 CT scans with
paired lesion masks and structured reports, covering 14 types of lesions across
8 organs. Building on this dataset, we developed LesionDiffusion (Fig. , a
text-controlled framework for generalizable lesion synthesis. The framework con-
sists of two key components: 1) a lesion mask synthesis network (LMNet) that
is guided by lesion bounding boxes (bbox) and mask attributes, and 2) a lesion
inpainting network (LINet) that is guided by both image attributes and the le-
sion mask. Through extensive experiments, we demonstrate that LesionDiffusion
significantly improves segmentation performance across a wide range of lesion
types. More importantly, our approach shows exceptional generalization, even
for unseen organs and lesion types, achieving a notable improvement in lesion
segmentation and surpassing the performance of existing state-of-the-art lesion
synthesis models.

2 Methods

2.1 Stage I: Lesion Mask Generation

Concurrent tumor inpainting methods, like DiffTumor [2], adopt an end-to-end
patch-wise generation scheme of tumor CTs based on a tumor mask deformed
from a unit sphere. Although this generation scheme is plausible in organs whose
tumors are characterized by a round-like shape and an arbitrary position, it
undermines generalizability as more tumor types do not share these features.
To effectively translate vague shape information into concrete lesion masks,
mask-related attributes from structured reports—such as shape, organ type, and
location—are used as conditional guidance, as illustrated in Fig and Fig (a).
Next, we develop a diffusion model, named LMNet, to generate lesion masks
that adhere to these constraints. Formally, for a precise lesion annotation my,



LesionDiffusion: Towards Text-controlled General Lesion Synthesis 3

Lesions in the training stage and structured report
@ Shape: "Round-like", "Irregular”, "Punctate"...

@ Organ type: "Hollow organ”, “Parenchymal organ”

Esophagus—8. Esophageal cancer = . N .
r © Lesion location: “Inside organ®, “Organ margin®

/

A Q Organ: "Liver", “Stomach®, “Right kidney"...
1. Lung tumor —sLung—# 5

b Stomache—9. Stomach cancer / Size: "8x12x14mm", "32x27x19mm"...

N
2. Liver cancer i . Relationship with surrounding organs: "No close
—eLiver- P 9 org:

3. Liver cyst 10. Kidney tumor relationship with adjacent organs”...

+—Kidney-—11. Kidney cyst

12. Kidney stone Structured

Lesion i} Surface characteristics: "Well-defined margin"...
Report

4. Gallbladder cancer __,
5. Gallstone Gallbladder!

13. Pancreas tumor
14. Pancreas cyst

+ Specific features: "Spiculated margins"...

6. Colon cancer—Colon—4 ancreass—

7. Bladder cancer —-BladderJ?

&% Enhancement status: "Enhanced CT", "Non-contrast CT"
8- Density: "Hypodense lesion, "Isodense lesion”...

Density variations: "Homogeneous", "Heterogeneous"...
Lesions included in Training Stage Image attribute

Mask attribute

Fig. 1. Lesions and Structured Lesion Reports in the Training Stage. The
LesionDiffusion model is trained on 14 types of lesions across 8 organs. The corre-
sponding structured reports include 11 attributes, which are categorized into mask
attributes and image attributes.

the forward noising process can be described as
m; = 4/ dtmo + 1-— dte, (1)

where my is the noisy mask at timestep ¢ and € is the Gaussian noise, @; repre-
sents the noise variance schedule [6]. Denoting the annotated mask attributes as
Amask, the my surrounded bounding box as B and the target organ semantics
as M, we proposed a bbox-weighted loss function with a hyperparameter ~:

CLMNet = EGNN(O,I) [”6 © B— ee(mt;tanBvAmaSk) O] B”%

2 (2)
+7H€ - EQ(mt; taMa Ba Amask)”z}

This objective is proposed to encourage the model’s focus on the constrained
area specified by our bounding box B, thus promoting accurate synthesis of the
lesion masks. The target organ semantic is extracted from the surrounding organ
semantics as a separate channel before concatenating with the bounding box B
and serving as a spatial condition for tumor site generation. Mask attributes
Amask are embedded using a pretrained text encoder in BiomedCLIP [22] and
fused into the generation process via cross-attention modules to describe shape,
location and other pertinent spatial information to the diffusion model.

2.2 Stage II: Lesion Image Inpainting

Similar to the mask-attributes-guided generation of the lesion mask, we utilize
image attributes—such as density, variation, and surface characteristics—to per-
form lesion image inpainting in Stage II, as illustrated in Fig and Fig. [2] (c).
Due to the large memory consumption of 3D CT images, we choose Latent-
Diffusion [I5] to train the diffusion model on a smaller latent space encoded
by a pair of dedicated autoencoders Ecr, Der. This is done following a similar
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Fig. 2. Overview of LesionDiffusion framework. (a) LMNet is trained to generate
lesion masks; (b) VQ-GAN is trained to compress 3D CT images into latent space
and then reconstruct them; (c) LINet is trained to perform lesion inpainting in the
latent space; (d) During the inference stage, the framework generalizes to any lesion
type, involving lesion attribute generation, lesion bounding box generation, lesion mask
generation, and inpainting.

paradigm as VQ-VAE [18], which encodes images with a discretized codebook ¢
and quantization step qc. We also adopt an adversarial module Dgjs. to boost
autoencoding performance similar to Diff Tumor [2]. For each CT image x, de-
noting its encoded latent as z = Ec7(x) and its reconstructed counterpart as
%X = Dcr(qe(z)), the training objective of our autoencoder is defined as the
combination of Iy reconstruction loss, codebook loss [3] and discriminative loss
from the adversarial module

Lag = ||x = %|[3 + [[2(2) — qc(2)|[3 + |2(qc(2)) — 2|3
+ log Dyjsc(x) 4 log(1 — Dgjse(X))
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where {2 is the stop-gradient function. After training the paired autoencoder,
we develop another diffusion model, dubbed LINet, on the latent space of Ecr.
Since the annotated lesion masks m encompass the full extent of pathologi-
cal regions—including both the lesion core and affected surrounding tissue—we
choose to perform the diffusion process solely within the lesion mask. Formally,
the forward diffusion process can be described as

z; = (Vayzo + V1 — az€) © Resize(m) + zg © (1 — Resize(m)) (4)

where Resize(+) function is used to resize the semantic condition m to be of
the same spatial resolution as the image latent zy, € is the Gaussian noise,
and a; represents the noise variance schedule. The denoising step uses LINet
to retrieve inpainted image latent from noises conditioned on image attributes
Aimage €ncoded by BiomedCLIP. To optimize the performance of the diffusion
model, we leverage the bounding box B’ surrounding the lesion area in the mask
and use [ loss to measure the difference between the input noise € and the
denoised latents €y within this box. Formally, the training objective is

1 .
LriNet = Econr(o,1) @He © B’ — €p(z¢; t, Resize(m), Aimage) © B'[|1 (5)

2.3 Inference process

In the inference stage of LesionDiffusion, given the lesion to be simulated, we
first generate its structured report and then sample to obtain the bounding
box (bbox). Finally, we use LMNet and LINet to obtain the lesion mask and
inpainted CT images, as shown in Fig. [2|

Specifically, we propose two methods for generating the complete structured
lesion report: (1) the user selects possible options for each attribute based on
medical knowledge, followed by controlled combination; (2) the user queries a
large language model (LLM) to generate the report. From the report, we ex-
tract four key attributes: "organ", "organ type", "lesion location", and "size",
which guide a rule-based bounding box (bbox) generation pipeline. Based on
the surrounding organ mask and these attributes, we categorize plausible le-
sion regions—such as “inside hollow organ,” “hollow organ margin,” or “inside
parenchymal organ”—and sample bbox centers accordingly under spatial con-
straints. If the sampled location or size violates predefined rules, we resample or
regenerate the report until a valid configuration is obtained.

Next, the lesion mask attribute, surrounding organ mask, target organ mask,
and lesion bbox are fed into LMNet. We use DDIM [I7] for fast sampling from
the learned lesion mask distribution. Since the generation result is a continuous
floating-point intensity map, we apply a simple capping threshold to obtain
a binary tumor semantic mask. For LINet inference, firstly VQ-GAN encoder
compresses CT image input into latent space. Then Gaussian noise replaces the
latent codes within the mask region, resulting in zp = e @ m + 29 ® (1 — m),
and execute T' time steps of reverse denoising to obtain the edited latent code,
which is then decoded back into a CT image by the VQ-GAN decoder.
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3 Experiment

Dataset Construction We compiled several datasets for generative training and
downstream evaluation. Specifically, we assemble 1505 CT scans and masks col-
lected from public and private sources: KiTS23 [5]: kidney tumor and cyst (489
scans); MSD [I]: colon tumor (126 scans), liver tumor (303 scans), lung tu-
mor (96 scans), pancreas tumor (216 scans), pancreas cyst (65 scans); private
data collected at The First Hospital of China Medical University: liver cyst (30
scans), gallbladder cancer (30 scans), gallstones (30 scans), esophageal cancer
(30 scans), gastric cancer (30 scans), kidney stone (30 scans), bladder cancer
(30 scans). All these scans are annotated with structured lesion reports by four
radiologists. The dataset was partitioned into training and testing sets with a
4:1 ratio for each lesion, resulting in 1204 training samples and 301 testing sam-
ples. We also set a hematencephalon segmentation dataset, INSTANCE22 [12]
(100 scans, train:test=80:20), for the generalization test, which is not included
in the generative model training set. We further collected 10767 CT images at
The First Hospital of China Medical University as templates for the inpainting
stage. We utilize Totalsegmentator[I9] to obtain organ segmentation for all CT
scans.

Implementation Details All generative trainings are performed under a static
learning rate of 1 x 10* with a batch size of 1 per GPU and a patch size of
128x128x 128 on 4 NVIDIA 4090 GPUs. The training processes use AdamW [14]
optimizers with a momentum of 0.99 and a weight decay of 1x10~5. The diffusion
model uses cosine noise schedule with 1000 timesteps and DDIM denoising [17]
of 200 timesteps to recover CT latents from Gaussian noise at a guidance scale
of 2.5. Moreover, our image autoencoder downsamples the original image by
2x and uses a codebook of 2048 entries. 7 is set to 0.001. For the downstream
segmentation tasks, we train each segmentation network using the official imple-
mentation of nnUNet-v2 [8]. Performance was evaluated for each lesion under
three settings: (1) training the segmentation model using 1000 synthetic lesions
generated from template data; (2) fine-tuning the nnUNet-V2 model, initially
trained on synthetic data, with real data from the corresponding lesion’s train-
ing set; (3) training the segmentation model exclusively on the real dataset. The
same settings were used when evaluating other synthesis models.

Downstream usability We first validate LesionDiffusion’s competence as a text-
based dataset augmentator by comparing the performance of dedicated segmen-
tation models trained with and without LesionDiffusion-synthesized samples. For
reference, we also compare LesionDiffusion’s augmentation performance with an-
other lesion-generating framework, Diff Tumor [2]. As shown in Tab. |1} samples
synthesized by LesionDiffusion can provide segmentation guidance comparable to
that of real samples and far better than that of DiffTumor-synthesized samples.
Specifically, we observe an averaged 6.9% DSC increase in segmentation models
pre-trained with LesionDiffusion-synthesized lesions instead of DiffTumor. These
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Table 1. Dice Similarity Coefficient(DSC) comparison under three settings real lesion
data only, synthetic lesion data only, and synthetic lesion data augmented by real lesion
data.

Method Stone Cyst Cancer A
erhods Gall. Kid.|Liver Pan. Kid.|Eso. Gall. Lung Liver Pan. Kid. Sto. Colon Blad.| " &'
Real | 77.6 70.4| 76.4 78.2 59.8|57.7 60.4 69.0 61.8 49.6 79.2 66.0 58.1 83.3|67.7
DiffTumor 2] 58.1 17.5/ 61.6 66.2 55.1|44.8 49.2 54.8 44.6 30.1 59.7 56.4 41.6 65.2(50.4
DiffTumor-+Real 75.1 54.4/84.4 79.2 63.1|62.0 63.4 66.7 48.0 44.1 81.9 71.3 59.9 79.5|66.6
LesionDiffusion 71.9 21.0| 77.2 65.7 48.3|60.4 55.7 61.3 63.8 35.8 60.5 61.1 42.6 76.2(57.3

LesionDiffusion+Real| 77.2 67.0| 83.0 80.4 62.5/61.8 66.0 68.9 64.7 51.7 82.6 70.0 61.4 84.2|70.1
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Fig. 3. Generalization to hematencephalon. (a) Downstream segmentation results
for hematencephalon. (b) Examples synthesized by LesionDiffusion.

models also performs the best on average after task-specific finetuning, outper-
forming models trained only with real data by 2.4% and models pre-trained with
DiffTumor-synthesized lesions by 3.5%.

Downstream Generalization We also expect the synthetic ability of LesionDiffu-
sion to be generalizable across both seen and unseen downstream tasks. Thanks
to our comprehensive structured medical report template which encompasses key
attributes for describing lesion shape and texture, LesionDiffusion can be easily
transferred to new tasks by using only an appropriate set of attribute inputs, as
shown in Fig. [3] To quantify LesionDiffusion’s generalization ability, we use it to
synthesize samples of hematencephalon for supervising a dedicated segmentation
model. As illustrated in Fig. a), despite LesionDiffusion’s original training set
lacking brain CT images and hemorrhage lesion types, models trained on Lesion-
Diffusion synthesized samples can still provide segmentation guidance compara-
ble to that of real samples. In contrast, DiffTumor suffers significantly from this
domain gap, with a 46% drop in DSC compared to LesionDiffusion. Moreover,
after task-specific finetuning, model trained using LesionDiffusion synthesized
lesions manages to provide a segmentation performance 15% better than that
trained with real data and 5% better than that trained with DiffTumor.

Generation alignment with textual guidance Firstly, we quantitatively evaluate
LMNet’s conditional alignment between generated tumor shape and prompted
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attributes using two morphological metrics individually evaluating the convex-
ity [13] and sphericity [20] of generated masks. Mathematically, a higher con-
vexity and sphericity indicate that the lesion more closely resembles a spherical
shape. As shown in Fig. (a), we can see a clear trend that masks generated
with "round-like" prompts are higher in both metrics compared to those with
"irregular" prompts. Additionally, we qualitatively evaluate LINet’s conditional
alignment by alternating several image attributes in Fig. [d|b,c), the results show
promising conformity with the input conditions.
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Fig. 4. Generation alignment with textual guidance. This figure illustrates the
effect of shape, density, and density variation conditions on image inpainting results.
(a) Green and blue dots represent the morphological metrics computed for round-like
and irregular tumor volumes respectively, with red crosses indicating the metric mean
values. From left to right, the examples correspond to an esophageal tumor, bladder
tumor, and liver cyst. (b) Comparison of generation control under the condition of
density. (¢) Comparison of generation control under the condition of density variation.

Ablation study of textual condition Ablation studies of LesionDiffusion are per-
formed by removing textual conditions in the generation process, forcing the
model to only implicitly learn lesion features through the training process. As
shown in Tab. [2] the results show different degrees of decrease in downstream
performances with respect to all different tasks, with an averaged decrease of
15.4% DSC. This effect is particularly pronounced for organs containing multi-
ple lesion types in the training set, such as the liver, kidney, and pancreas, and
is primarily due to the absence of textual conditions, which causes the model to
be uncertain about the specific lesions to generate in these organs.

4 Conclusion

In conclusion, we introduce LesionDiffusion, a text-controllable framework for
inpainting lesions in 3D CT images. By utilizing a structured lesion report tem-
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Table 2. Ablation studies of LesionDiffusion.

Settines Stone Cyst Cancer Av
& Gall. Kid. |Liver Pan. Kid.|Eso. Gall. Lung Liver Pan. Kid. Sto. Colon Blad. &

LesionDiffusion 71.9 21.0| 77.2 65.7 48.3|60.4 55.7 61.3 63.8 35.8 60.5 61.1 42.6 76.2|57.3

LesionDiffusion w.o. text|62.4 15.1|42.8 48.6 24.9(60.2 50.7 57.5 44.3 20.1 41.9 33.7 31.8 53.1 |41.9

plate, the framework enables fine-grained control over lesion attributes and ac-
commodates a diverse range of lesions. Our model demonstrates substantial im-
provements in segmentation performance and exhibits strong generalization to
unseen lesions and organs. LesionDiffusion outperforms current state-of-the-art
models, providing a scalable solution for lesion recognition in medical imaging.
While promising, further research is needed to explore its generalization across
a broader range of diseases, and the training dataset is still limited. In future
work, we aim to expand the training dataset and validation scenarios to develop
a controllable lesion generation foundation model.
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