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Abstract. Liver landmarks provide crucial anatomical guidance to the
surgeon during laparoscopic liver surgery to minimize surgical risk. How-
ever, the tubular structural properties of landmarks and dynamic intra-
operative deformations pose significant challenges for automatic land-
mark detection. In this study, we introduce TopoNet, a novel topology-
constrained learning framework for laparoscopic liver landmark detec-
tion. Our framework adopts a snake-CNN dual-path encoder to simulta-
neously capture detailed RGB texture information and depth-informed
topological structures. Meanwhile, we propose a boundary-aware topol-
ogy fusion (BTF) module, which adaptively merges RGB-D features to
enhance edge perception while preserving global topology. Additionally, a
topological constraint loss function is embedded, which contains a center-
line constraint loss and a topological persistence loss to ensure homotopy
equivalence between predictions and labels. Extensive experiments on
L3D and P2ILF datasets demonstrate that TopoNet achieves outstand-
ing accuracy and computational complexity, highlighting the potential
for clinical applications in laparoscopic liver surgery. Our code is avail-
able at https://github.com/cuiruize/TopoNet.

Keywords: Landmark detection · Laparoscopic liver surgery · Topology
constraint · RGB-D fusion.

1 Introduction

Laparoscopic liver surgery has been widely adopted due to its perioperative ad-
vantages of reduced blood loss, faster recovery, and lower complication rates [8,9].
However, the limited laparoscopic field of view and intraoperative deformations
make the identification of key liver anatomical structures particularly challeng-
ing. Augmented reality (AR) navigation technology has emerged as a promising
solution to provide visual guidance to surgeons by establishing correspondences
between intraoperative 2D keyframes and preoperative 3D anatomy [1,10]. Liver
landmarks, including silhouette, falciform ligament, and ridge, have been vali-
dated as informative biomarkers to provide consistent clues in preoperative-to-
intraoperative relations and assist in decision-making [14–16]. In this regard,
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Fig. 1: Illustration of the crucial role of topological priors in tubular character-
istics learning and topology preservation. We highlight a broken landmark in
yellow circle and two topological false positives caused by outliers in red circle.

accurate liver landmark detection is essential for performing high-quality reg-
istration with preoperative 3D models and reaching AR navigation. However,
automatic intraoperative liver landmark detection remains challenging due to
liver deformation, varying laparoscopic viewpoints, and occlusions from outliers
like surgical instruments. As a result, there is still demand for the development
of intelligent computer-assisted techniques for robust liver landmark detection
in a complex laparoscopic environment.

Compared to landmark definitions like points [25], bounding boxes [21], or
contours [6], defining liver marker points as continuous semantic regions has
been proven to be of great value in enhancing intraoperative spatial relation-
ships [1,16,19]. Several existing studies have explored using deep-learning-based
models to automatically segment landmark regions. Labrunie et al. [15] em-
ployed an original U-Net [18] to detect 2D landmarks and then aligned them
with preoperative 3D models. Subsequently, more advanced networks [1], e.g.,
nnU-Net [13] and UNet++ [28], have been applied for more accurate landmark
detection. However, these methods primarily utilize existing segmentation frame-
works while overlooking the anatomical characteristics of liver landmarks. More
recently, D2GPLand [16] integrates depth geometric priors and prompt-guided
training to enhance the learning of liver landmark features, further improving
the detection results. Despite improvements in detection performance, the fine-
tubular structural properties of liver landmarks and the presence of outliers still
seriously affect the accuracy of landmark detection, as shown in Fig. 1 (c). Most
existing approaches concentrate on pixel-level textural and geometric clues, ig-
noring the intrinsic topology characteristics of liver landmarks, which are effec-
tive in mitigating false positive detections from outlier occlusions and preserving
the structural continuity of tubular landmarks. To this end, we consider embed-
ding topological constraints into the network to develop an efficient and precise
laparoscopic liver landmark detection algorithm.

In this work, we introduce a topology-constrained learning network, termed
TopoNet, for efficient laparoscopic liver landmark detection. Specifically, con-
sidering that depth modality has been demonstrated to provide effective auxil-
iary geometric information [16], we design a snake-CNN dual-path encoder,
which employs the proposed snake topology acquisition (STA) blocks and a CNN
to extract depth topological structures and detail texture features, respectively.
Then, a boundary-aware topological fusion (BTF) module is proposed for
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Fig. 2: Overall architecture of the proposed TopoNet.

adaptively merging RGB-D features and sensing boundary features, which facil-
itates the preservation of the global topology of liver landmarks (see likelihood
maps in Fig. 1). To adequately exploit topology characteristics for detection su-
pervision, we also present a topological constraint loss function composed
of a center-line constraint loss and a topological persistence loss to ensure homo-
topy equivalence between predictions and labels. Experimental results on L3D
and P2ILF datasets [1,16] show that TopoNet outperforms 12 advanced models
on the liver landmark detection task.

2 Methodology

The detailed pipeline of TopoNet is illustrated in Fig. 2. Our framework takes
RGB keyframes and the corresponding depth maps estimated by the frozen
AdelaiDepth [26] as inputs. We embrace multi-view snake convolutions into the
snake topology acquisition (STA) block to capture deep topological cues and
combine ResNet [11] to extract multiscale RGB features. Then, the depth feature
Di and RGB feature Ri output from corresponding encoder blocks are passed
into the boundary-aware topological fusion (BTF) module to generate the fused
features Fi. Notably, the first BTF module takes D1 and R1 as inputs, and the
other ones utilize only the former fused feature Fi−1 for residual learning to
reduce information loss. Finally, we adopt a CNN decoder to produce landmark
results and supervise our network with the proposed topological constraint loss
to constrain the connectivity and topological persistence of detection maps.

2.1 Snake-CNN Dual-Path Encoder

To perceive semantic landmarks with slender and tortuous tubular structures,
we design a snake-CNN dual-path encoder that separately extracts depth topol-
ogy information and RGB texture clues with our STA blocks and CNN blocks.
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As illustrated in Fig. 2, we employ a ResNet-34 encoder [11] as the backbone
for RGB keyframes, i.e., the i-th ResNet block outputs the RGB feature Ri.
The depth pathway consists of five cascaded STA blocks for perceiving topolog-
ical properties. In i-th STA block, the input depth feature Di−1 is first passed
through a convolution block for lower-level feature acquisition. Then, we apply
multi-view dynamic snake convolution (DSConv) [17] blocks to extract critical
topology cues in the X- and Y-axes. Lastly, we concatenate single-axis features
and use another convolution block for cross-axis feature aggregation to generate
the output depth feature Di.

2.2 Boundary-aware Topological Fusion

The proposed BTF module aims to integrate RGB and depth features effectively
to capture comprehensive landmark features and preserve topological structures.
As shown in Fig. 2, the input dual-modal features Ri and Di are first concate-
nated along the channel dimensions and fed into the convolution block to obtain
merged features. Then, a global average pooling operation and Sigmoid acti-
vation are applied to generate the fused attention map Af that highlights the
important regions. The fusion process can be formulated as

Af = σ
(
Pg(ReLU(BN(Conv(C[Di, Ri]))))

)
, (1)

where Conv represents the convolution operation, BN is batch normalization. Pg
is the global average pooling operation. Afterward, we multiply Af by Ri, Di

and element-wise sum them to get the primary fused feature F̂i:

F̂i = (Ri ·Af ) ⊕ (Di ·Af ), (2)

where ⊕ stands for the element-wise summation. Upon getting F̂i, we design
a boundary enhancement operation to guide the model to focus on the am-
biguous edge regions. Here the principle is that liver landmarks are ultimately
the boundary areas of the liver, and focusing on these regions is beneficial for
holistic learning of anatomical structures, thus preserving the global topology of
liver landmarks, i.e., the relationships among different types of landmarks. Con-
cretely, we apply an average pooling with 3× 3 kernel and compute the feature
differences by element-wise subtraction to obtain the boundary map Mb. After
that, we perform multi-scale aggregation of Mb and the output of the previous
BTF module Fi−1 with convolution operation and add F̂i in the form of residual
to reduce the information loss, resulting in the output Fi:

Fi = F̂i ⊕ Conv
(
BN(ReLU(C[(F̂i − Po(F̂i)), Fi−1]))

)
, (3)

where Po indicates the average pooling operation.

2.3 Topological Constraint Loss

To further refine the topological structure, we introduce the topological con-
straint loss function for supervision, involving a center-line constraint loss and
a topological persistence loss.
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Center-line Constraint Loss. Since tubular structures rely heavily on connec-
tivity, traditional pixel-wise segmentation losses (e.g., Dice Loss) that mainly fo-
cus on overlapping areas usually overlook structural discontinuities. To this end,
we inject the center-line supervision into the loss function for ensuring landmark
continuity. This supervision extends the clDice loss function [20] to a multi-class
form to supervise our network. Given the prediction Pl of landmark class l and
its label Gl, we can extract their skeletons Sl

p and Sl
g. The topology precision

Tprec and topology sensitivity Tsens can be defined as

Tprec(S
l
p, Gl) =

|Sl
p ∩Gl|
|Sl

p|
, Tsens(S

l
g, Pl) =

|Sl
g ∩ Pl|
|Sl

g|
. (4)

Then we can compute the multi-class center-line constrained loss Lcl:

Lcl =
1

L

L∑
l=1

(
2×

Tprec(S
l
p, Gl)× Tsens(S

l
g, Pl)

Tprec(Sl
p, Gl) + Tsens(Sl

g, Pl)

)
, (5)

where L = 3 denotes the number of landmark classes to be detected.

Topological Persistence Loss. Impacted by outliers present in laparoscopic
scenes, including instruments, blood, and similarly textured tissues, the network
is prone to produce topological false positive results. To maintain the topological
consistency between predictions and labels, we introduce a novel topological per-
sistence loss Lper based on the persistent homology theory [7]. Given a predictive
likelihood map Yl of landmark class l and its ground truth Gl, we exploit the
efficient barcode computation algorithm [22] to obtain the persistence barcodes
of Yl and Gl in order to obtain the sets of birth and death coordinates of the
matched connected components (denoted by Bm and Dm) and the unmatched
ones (denoted by Bu and Du). For each matched connected component C, we
can find the persistence interval Cpre = (Bm

pc, D
m
pc) in prediction from Bm and

Dm, while the persistence interval in GT is denoted by Cgt = (Bm
gc, D

m
gc). Here,

we can obtain the persistence loss for the matched connected components by
calculating the difference of the persistence intervals of C in prediction and GT:

Ll
m =

1

N l
m + s

·
∑
i∈M

(||Bm
pc −Bm

gc||2 + ||Dm
pc −Dm

gc||2), (6)

where N l
m is the number of matched connected components of class l and s =

1e−5 denotes the smoothing factor. M is the set of matched components. For each
unmatched connected component Z in prediction, we can also get its persistence
interval by Zpre = (Bu

pz, D
u
pz). Then we can compute the persistence loss for the

unmatched components by calculating the length of its persistence interval:

Ll
u =

1

N l
u + s

·
∑
i∈U

||Bu
pz −Du

pz||2, (7)
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where N l
u denotes the number of unmatched connected components of l and U

is the set of unmatched components in prediction. The final Lper is derived by
summing the individual losses and expanding to all landmark classes:

Lper =
1

L

L∑
l=1

(
N l

m

N l
m +N l

u

· Ll
m +

N l
u

N l
m +N l

u

· Ll
u). (8)

Lastly, we combine two topological constraint losses with Dice loss Ldice to reach
the total loss function:

Ltotal = λd · Ldice + λcl · Lcl + λper · Lper, (9)

where λd, λcl, λper are the balancing parameters for each loss function.

3 Experiments

3.1 Datasets and Metrics

We conduct experiments on two laparoscopic liver landmark datasets: L3D [16]
and P2ILF [1]. L3D contains three liver landmark categories and consists of 1,152
annotated keyframes of 1920×1080 pixels from liver surgical videos. It is divided
into three sets, where 921 frames from 32 patients for training, 122 frames from
3 patients for validation, and 109 frames from 4 patients for testing. P2ILF
has 183 annotated laparoscopic images for liver landmark detection. Wherein,
167 images from 10 patients are used for training while the others are used for
testing. Since only the training set is publicly available, we randomly select 124
images from 8 patients for training and the remaining for testing.

For evaluation metrics, we follow the experimental setup in [16], utilizing the
Intersection over Union (IoU), Dice Score Coefficient (DSC), and Average Sym-
metric Surface Distance (Assd). We also compute the average inference speed
and GFLOPs to evaluate the model efficiency.

3.2 Implementation Details

The training and testing processes of TopoNet are executed on a single NVIDIA
RTX A6000 GPU. We train 100 epochs with a batch size of 4. We employ the
Adam optimizer with the initial learning rate of 8e-5 and weight decay factor of
3e-5. In addition, the CosineAnnealingLR scheduler is used to adjust the learning
rate to 1e-6 at the end of the training. A warmup strategy is also applied to
adaptively embed topology constraints. We empirically set λd = 0.4, λcl = 0.4,
and λper = 0.2 for balancing parameters.

3.3 Comparison with State-of-the-art Methods

We follow the experimental settings of L3D benchmark to compare TopoNet with
12 cutting-edge methods. As shown in Table 1, TopoNet achieves more precise
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Table 1: Comparison with cutting-edge methods on L3D and P2ILF test sets. We
use bold and underline to mark the best and the second best results, respectively.

Methods
L3D [16] P2ILF [1]

Infer. Speed ↓ GFLOPs ↓
DSC ↑ IoU ↑ Assd ↓ DSC ↑ IoU ↑ Assd ↓

U-Net [18] 51.39 36.35 84.94 29.89 17.89 47.95 172.65ms 774.30
COSNet [14] 56.24 40.98 69.22 26.78 16.05 47.33 167.25ms 319.24
Res-UNet [24] 55.47 40.68 70.66 25.84 15.76 50.97 155.76ms 314.65
UNet++ [28] 57.09 41.92 74.31 34.96 21.57 42.39 213.19ms 554.87
HRNet [23] 58.36 43.50 70.02 33.64 21.31 44.16 146.82ms 376.52
TransUNet [4] 56.81 41.44 76.16 25.49 15.22 52.14 262.21ms 795.10
Swin-UNet [2] 57.35 42.09 72.80 18.65 10.62 68.46 127.22ms 129.68
SAM-Adapter [5] 57.57 42.88 74.31 21.12 12.00 57.13 300.21ms 489.35
SAMed [27] 62.03 47.17 61.55 31.73 19.42 40.08 278.56ms 488.95
SAM-LST [3] 60.51 45.03 68.87 28.75 18.38 46.53 304.78ms 517.68
AutoSAM [12] 59.12 44.21 62.49 25.71 15.43 53.65 337.44ms 589.21
D2GPLand [16] 63.52 48.68 59.38 40.55 25.87 38.73 297.93ms 572.85
TopoNet (Ours) 65.19 50.56 28.07 41.36 26.88 30.16 86.43ms 276.99

D2GPLand Ours GTSAMedHRNetInput

Fig. 3: Visual comparison of our TopoNet with representative models.

detection results on both datasets than other models. In addition, our results are
statistically significant based on significance tests (p-value < 0.05). Compared
to the second-ranked D2GPLand, TopoNet improves 1.67% on DSC, 1.88% on
IoU, and 31.31 pixels on Assd on L3D dataset. For the P2ILF dataset, our
method improves the performance on the DSC, IoU, and Assd metrics by 0.81%,
1.01%, and 8.57 pixels, respectively. Notably, we observe that the performance
improvement in the Assd metric is tremendous. Assd is defined to compute the
shortest distance from each foreground pixel in prediction to the foreground
in GT. As mentioned in Sec. 2.3, the outliers in surgical keyframes affect the
model to produce topological false positives in prediction, which are not typically
located in locations that overlap with the target landmarks, and each pixel in
these topologically inaccurate predictions contributes significantly to the Assd
metric. The topological constraint loss, especially Lper, proposed in our method
can suppress the negative effects of these outliers and preserve the topology
structure, resulting in a substantial improvement in the Assd metric.

For model efficiency, the inference speed of TopoNet outperform all compared
models and the computational complexity of our model also reaches the leading
level. Compared to D2GPLand, the inference speed of TopoNet is about four
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Prediction GTLigament Ridge SilhouetteInput

Fig. 4: Visualizations of class-aware attention maps with our predictions.

Table 2: Ablations for key Designs.

Methods DSC IoU Assd
Baseline 54.64 40.94 49.64
w/o Lper 58.87 46.69 38.66
w/o Lcl 58.63 46.37 32.01

w/o Lper & Lcl 57.44 45.86 43.32
w/o BTF 57.92 46.03 37.47
TopoNet 59.79 47.38 29.27 Fig. 5: Ablations for backbones.

times faster while requiring only about half the GFLOPs. Fig. 3 also exhibits
the visualizations of TopoNet and competitors. With topological characteristics,
our method produces superior results while alleviating the influences of outliers.

3.4 Ablation Analysis

We conduct ablation studies on the key components of our model, including the
boundary-aware topological fusion (BTF) module, center-line constraint loss Lcl,
and topological persistence loss Lper. We use the evaluation set of L3D for ex-
periments. In our baseline, we replace the BTF module with simple RGB-D
concatenation and remove the proposed topological losses. As illustrated in Ta-
ble 2, the topological losses contribute to the detection performance, and the
addition of Lper brings a significant improvement in Assd. When embedding the
BTF module for comprehensive RGB-D fusion, there is also an improvement
in detection performance with 1.87% in DSC, 1.35% in IoU, and 8.20 pixels in
Assd. In short, both our BTF module and topological constraint loss functions
play an indispensable role in optimizing the model performance.

We also analyze the effect of different backbones on the snake-CNN encoder
in RGB-D feature extraction. As shown in Fig. 5, when applying ResNet-34
blocks for RGB keyframes and the STA blocks for depth maps, our framework
achieves optimal performance in all metrics. We also display the attention maps
from the BTF Module 5 (refer to Fig. 2) for two typical samples in Fig. 4. It can
be seen that our TopoNet enables accurate detection of landmarks and precise
identification of landmark-related regions from a topological standpoint.
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4 Conclusion

This study presents a lightweight topological-constrained framework TopoNet for
precise and efficient laparoscopic liver landmark detection. Our framework com-
prises a snake-CNN dual-path encoder for RGB-D feature extraction, coupled
with a boundary-aware fusion module to integrate bi-modal features and preserve
the topology. More importantly, a topological constraint loss is introduced to en-
hance the learning of topological characteristics of liver landmarks and prevent
topological errors. Our method outperforms current state-of-the-art methods
with faster inference. This work opens up new possibilities for precise and effi-
cient liver landmark detection and facilitates the application in clinical surgery.
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