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Abstract. Time-of-flight magnetic resonance angiography (TOF-MRA)
is widely recognized as the gold standard for non-invasive assessment of
cerebrovascular lesions. However, its long scanning times and susceptibil-
ity to motion artifacts often result in image blurring and loss of diagnos-
tic information. To address these limitations, the synthesis of TOF-MRA
images from multi-modal MR images has emerged as an effective solu-
tion. In this paper, we propose a novel Multi-Modal Diffusion Model
(MMDM) for TOF-MRA image synthesis, which fully leverages com-
plementary anatomical and pathological information from multi-modal
MR images to enhance synthesis performance. Specifically, we introduce
modality-specific diffusion modules, each of which independently models
the deterministic mapping from a source domain to the target domain,
preserving modality-specific prior knowledge. Then, we propose a cross-
modal dynamic fusion module to integrate multi-path diffusion features.
Additionally, we present a Maximum Intensity Projection (MIP) loss,
which constrains the consistency of adjacent slices in the maximum in-
tensity projection space, addressing the issue of vascular discontinuities
caused by 2D training. Finally, we propose a Noise-adaptive Weight-
ing Strategy (NAWS) that dynamically balances the multi-objective loss
weights based on the data distribution of the diffusion model, ensur-
ing stable convergence during training. Experimental results demon-
strate that our method significantly outperforms existing approaches
on both the original images and MIP images. Our code is available at
https://github.com/taozh2017/MMDM-Syn.
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1 Introduction

Multi-modal magnetic resonance imaging, including T1-weighted (T1W), T2-
weighted (T2W), and fluid-attenuated inversion recovery (FLAIR) sequences,
offers detailed insights into brain anatomy and pathology [5]. Despite their di-
agnostic synergy [3], Time-of-Flight Magnetic Resonance Angiography (TOF-
MRA) is still needed in clinical practice to visualize vascular structures. TOF-
MRA is widely used for detecting cerebrovascular abnormalities, stenosis, and
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hemodynamic changes [2]. However, its long scan times can lead to motion arti-
facts, causing image blurring and quality degradation [7]. To address these issues,
synthesizing TOF-MRA images from multi-modal MR images has emerged as
an effective solution.

Existing cross-modal synthesis methods in medical imaging are mainly based
on Generative Adversarial Networks (GAN) [17,4,24] and Diffusion Models [11,16].
However, the mode collapse and instability [1] in the GAN training process of-
ten result in structural distortions limiting the clinical reliability of the model.
Original diffusion models focus on iteratively denoising random noise, gradu-
ally aligning the noise distribution with the target data distribution [8,20,19].
Although this mechanism injects diversity into the generated images, it also
weakens the determinism of cross-modal mapping due to the uncontrollable in-
terference from random noise. A recently proposed Brownian Bridge Diffusion
Model (BBDM [12]) abandons the noise-to-data mapping paradigm and instead
directly models the diffusion process between the source (e.g., T1W) and the tar-
get (e.g., TOF-MRA) domain based on the Brownian bridge diffusion process.
By constraining the starting and ending points of the diffusion path, BBDM can
explicitly learn the cross-modal feature correspondences.

Despite recent advances in medical image synthesis, which have demonstrated
the potential to generate missing modalities [17,4]. Existing approaches primarily
focus on single-modality translation [6,22] or simply concatenating multi-modal
images during input [4,15,21], often neglecting the rich vascular features embed-
ded in multi-modal MRI data. As a result, synthesized TOF-MRA images often
suffer from incomplete vessel continuity or insufficient resolution of microvascular
details, limiting their clinical utility.

In this paper, we propose a Multi-Modal Diffusion Model (MMDM) for syn-
thesizing high-fidelity TOF-MRA images from multi-modal MR images. Specif-
ically, the architecture comprises two core components: (1) Three modality-
specific diffusion modules, each of which independently learns a deterministic
mapping relationship between a source modality and the target TOF-MRA
modality, explicitly preserving vascular prior knowledge. (2) Cross-modal dy-
namic fusion module, which adaptively integrates intermediate features from
multiple diffusion paths to mitigate inter-modal conflicts. To address vascular
discontinuities in 3D rendering caused by 2D slice training, we present a Maxi-
mum Intensity Projection (MIP) loss that enforces distribution alignment of ad-
jacent slices in MIP space, thereby optimizing 3D vascular structural coherence.
Furthermore, to tackle the challenge of manual weight tuning in multi-objective
optimization, we propose a Noise-adaptive Weighting Strategy (NAWS) based
on the data distribution in Brownian bridge diffusion progress. NAWS dynami-
cally adjusts the weight ratio between losses across diffusion timesteps, ensuring
stable convergence of multi-objective training. Experimental results show that
our model outperforms other state-of-the-art synthesis methods.

The contributions of this paper are highlighted as follows: i) To the best of
our knowledge, it is the first multi-modal diffusion framework for medical im-
age translation, which jointly optimizes cross-modal diffusion paths from multi-
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Fig. 1. Overview of our multi-modal diffusion model. (a) During the training
phase, the model generates three modality independent predictions x̂t1

0 , x̂t2
0 , x̂flair

0 and
a cooperative prediction x̂0 all of which are constrained using the MIP loss function
LMIP and dynamically weighted through Noise-adaptive Weighting Strategy. (b) In
the inference phase, the model utilizes the cooperative prediction x̂0 and applies the
reverse process (99K) as described in Eq.(2).

modal MR images to TOF-MRA images. ii) A vascular continuity-enhanced
loss is presented to enforce consistency via maximum intensity projection, effec-
tively mitigating vessel discontinuities caused by 2D slice-wise training. iii) A
noise-adaptive weighting strategy is presented to dynamically adjust loss weights,
ensuring stable optimization under complex training objectives.

2 Proposed Method

Overview: Fig. 1 shows the structure of our model, which generates three in-
dependent predictions and dynamically fuses them to obtain the final output.

2.1 Multi-Modal Diffusion Model

BBDM [12] defines the Brownian bridge diffusion process between the source
(e.g., T1W) and the target (e.g., TOF-MRA) data distribution. From the two
paired data distributions (X , Y), given a sample (x, y), the distribution of the
intermediate state at time step t is defined according to diffusion process by

qBB(xt | x0,y) := N (xt; (1−mt)x0 +mty, δtI), (1)

where x0 = x as the target, y = xT as the start, mt = t/T, δt = 2(mt −m2
t )

and T is the total diffusion time steps. Based on the reparameterization trick in
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DDPM [20], we can obtain the samples xt of all data at any time step t within
time step T by xt = (1−mt)x0+mty+

√
δtϵ, where ϵ is the noise sampled from

a standard normal distribution N (0, 1). By deriving the backward process using
the Markov chain and Bayes’ theorem, we can obtain the conditional distribution
of the reverse process:

p(xt−1 | xt,x0,y) := N (xt−1; µ̃t(xt,x0,y), δ̃tI), (2)

where µ̃t = c1xt + c1x0 + c3y with δ̃t, c1, c2, c3 are constants with respect to
time t. As target x0 is unknown, the objective of the model ϵθ is to fit µ̃t and
then, through conditional distribution Eq.(2) and xt−1 = µ̃θ

t +
√
δ̃tϵ, sample to

reverse along the time step t to recover the target x0. The training process aims
to make the two distributions p(xt−1 | xt, x0, y) and pθ(xt−1 | xt, y) identical,
where θ means the model’s parameter. The loss function of this process is

LBBDM = ∥mt(y − x0) +
√

δtϵ− ϵθ(xt, t)∥22, (3)

which is equal to ∥xt − x0 − ϵθ(xt, t)∥22.
We define the symbols as follows: x0, x

t1, xt2, xflair represent TOF-MRA,
T1W, T2W and FLAIR slices. xm

t are latent slices in diffusion process. x̂m
0 are

the independent prediction of the target TOF-MRA and x̂0 is the cooperative
prediction, where m ∈ {t1, t2, f lair}.

To avoid detail loss caused by naive concatenation or gating mechanisms,
based on BBDM, we design three modality-specific diffusion modules (ϵt1θ , ϵt2θ ,

ϵflairθ ), each built on Restormer-UNet [23]. Every module independently mod-
els the Brownian bridge diffusion path from a single modality to TOF-MRA
and we add the source modality slice xm into the model’s input as the con-
dition. Unlike the original BBDM, the objective of our diffusion module is
∥xm − x0 − ϵmθ (xm

t , t,xm)∥. Given different optimization objectives (xm − x0)
across modules, we unify their outputs ϵmθ (xm

t , t,xm) into the target domain’s
latent representation x̂m

0 by x̂m
0 = xm − ϵmθ . Restormer significantly reduces

computational complexity through a channel-wise attention mechanism, achiev-
ing efficient high-resolution feature modeling in image restoration tasks, while
preserving global dependencies, making it suitable for detail-sensitive medical
imaging tasks.

To resolve modality-specific prediction discrepancies, we introduce the cross-
modal dynamic fusion module (ϵ0θ) that adaptively aggregates complementary
information from other modalities, generating spatially consistent TOF-MRA
predictions. Finally, target TOF-MRA’s cooperative prediction x̂0 can be repre-
sented as:

x̂0 = ϵ0θ(x̂
t1
0 , x̂t2

0 , x̂flair
0 ,xt1,xt2,xflair, t) (4)

2.2 Maximum Intensity Projection Loss

To eliminate stripe artifacts along non-imaging planes in 3D views, we adopt a
2.5D input approach. However, this strategy may introduce vascular disconti-
nuities in 3D rendering due to the limitations of 2D slice training. Inspired by
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Fig. 2. Left: The calculation process of the i-th layer of the GT MIP xMIP and the
predicted MIP x̂MIP. Right: We combine the two uncertainties of the diffusion model’s
output, model-bias and data-bias to dynamically adjust the weight of Lhyb.

the Maximum Intensity Projection (MIP) can model spatial correlations [18],
we propose a MIP loss function to constrain the distribution of maximum val-
ues of the generated images. By enforcing the distribution alignment of adjacent
slices in the maximum intensity projection space, this loss encourages cross-slice
continuity of vascular structures.

In TOF-MRA images, vascular structures are characterized by high-intensity
regions. The Gumbel sampling mechanism approximates the distribution of high-
intensity signals, enforcing constraints on vascular regions and improving the
quality and accuracy of the generated vascular features. In this case, we leverage
the Gumbel sampling mechanism to define the MIP loss. Specifically, given a
GT image x0 ∈ RN×W×H , we compute its channel-wise MIP image by

xMIP[i, :, :] = max(x0[0 : i, :, :]) ∈ R1×W×H , i ∈ {0, ..., N−1}, (5)

where N is the number of 2D slices, and W and H denote the width and height
of the image. For the prediction map x̂0 ∈ RN×W×H , we calculate its MIP
image x̂MIP ∈ RN×W×H through Gumbel random sampling, which models the
maximum values and enable gradient backpropagation by

x̂MIP[i, :, :] =

i∑
j=0

(Softmax

(
x̂0[0 :j, :, :] +RGumbel

τ

)
· x̂0[0 :j, :, :]), (6)

where RGumbel = −ln(−ln(u + 1−20) + 1−20), τ is a temperature coefficient
and u ∈ RN×W×H is a random matrix following the U(0, 1) distribution. Fi-
nally, the MIP loss is calculated as: LMIP(x̂0, x0) = LMSE(x̂MIP, xMIP) +
LMSE(x̂

r
MIP, xr

MIP), where LMSE is the mean square error. x̂r
MIP and xr

MIP are
MIP images computed by reversing x̂0 and x0 along the channel dimension.

Consequently, the hybrid loss includes two parts: one applied to the original
image and the other to the MIP image. The formulation is formulated by

Lhyd(x̂0, x0) = LMIP(x̂0, x0) + LMSE(x̂0, x0). (7)
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2.3 Noise-adaptive Weighting Strategy

In this study, two key factors may affect the diffusion model’s output, model-bias
and data-bias. The former originates from the model itself, while the latter is
introduced by the noise component in the input data of the diffusion model.
To address these biases, we present a Noise-adaptive Weighting Strategy. For a
regression task, according to the multi-task learning optimization theory [10,13],
given the model ϵθ and the input x, we have a likelihood function for the prob-
ability of GT y given the output ϵθ(x) as p(y|ϵθ) := N (ϵθ(x), σ2), it follows
a normal distribution with ϵθ(x) as the mean and σ as the variance. We refer
to this as the model-bias effect. Due to length constraints, the model input and
GT x0 is omitted in Fig. 2 and Eqs.(8,9). For our modality-specific modules
ϵt1θ , ϵt2θ , ϵflairθ , their input xm

t ∼ N (xm
t ; (1 − mt)x0 + mtx

m, δtI) contains
noise with intensity

√
δt, we consider this as data-bias for the model prediction:

p(x̂m
0 ) := N (xm − ϵmθ , σ2

m + δt). (8)

Since the cross-modal dynamic fusion module ϵ0θ dose not account for data un-
certainty introduced by xm

t , for four predictions {x̂0, x̂t1
0 , x̂t2

0 , x̂flair
0 }, we have:

p(x̂0, x̂t1
0 , x̂t2

0 , x̂flair
0 ) := N (ϵ0θ, σ2

0)
∏
m

N (xm − ϵmθ , σ2
m + δt), (9)

and the negative log probability can be expressed by

−log p ∝ 1

2σ2
0

∥x0 − x̂0∥2 +
∑

m

1

2σ2
m + 2δt

∥x0 − x̂m
0 ∥2 +A, (10)

where A = logσ0 + 1
2

∑
m log(σ2

m + δt). Considering that a very small value
of A may lead to an excessively small loss, we introduce a regularization term
C = log (1 + σ2

0) +
∑

m log (1 + σ2
m + δt).

Overall Loss Function: the total loss of the model is formulated as follows:

Ltotal =
1

2σ2
0

Lhyd(x̂0, x0) +
∑

m

1

2(σ2
m + δt)

Lhyd(x̂
m
0 , x0) + C, (11)

where σ0 and σm are learnable parameters to adaptive adjustment of the loss
functions’ weights and m ∈ {t1, t2, f lair}.

3 Experiments

Dataset. We implement experiments on an in-house dataset, comprising 560
multi-modal brain MRI scans (i.e., T1W, T2W, FLAIR, and TOF-MRA) from
140 patients (age: 68.15±7.95, 62.14% female) at 2022. All scans were anonymized
and registered to TOF-MRA’s shape (image size: 288 × 320, number of slices:
213.66 ± 11.94, voxel size: 0.65×0.625×0.625). These paired data are randomly
divided into 98 cases for training, 28 for testing, and 14 for validation.
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Fig. 3. Qualitative results of different methods. From top to bottom: Axial view
of the original TOF-MRA; Sagittal view; Axial MIP; Zoom-in view of axial MIP; and
Coronal MIP. All images have been processed by min-max normalization.

Table 1. Quantitative results with comparison methods.

TOF-MRA Axial MIP
Methods PSNR ↑ SSIM ↑ RMSE(%) ↓ PSNR ↑ SSIM ↑ RMSE(%) ↓
Pix2pix 32.5116 0.8609 2.395 26.1776 0.7721 5.003
DDPM 32.3867 0.8307 2.455 26.0530 0.7508 5.101
ResViT 32.9006 0.8351 2.311 26.3866 0.7346 4.628
BBDM 33.1392 0.8767 2.250 26.3624 0.7750 4.919
UNest 29.6771 0.7898 3.300 21.5071 0.6247 8.476

RDDM 30.1936 0.7897 3.116 22.8504 0.6757 7.280
Ours 33.6237 0.8832 2.128 27.1845 0.792 4.463

Implementation Details. All experiments are conducted in a PyTorch
2.3.1 environment with CUDA 12.0 and two NVIDIA 3090 GPUs. All meth
used 2.5D axial slices and all diffusion models are trained with 1000 diffusion
steps. Our method employs 200 DDIM sampling steps. The Adam optimizer is
employed with a learning rate of 0.0001. Batch size and epochs are set to 4 and
200. The comparison methods are trained with their publicly available codes.

3.1 Comparison with State-of-the-art Methods

Comparison Methods. In this study, we compare our method with several ex-
isting GAN and diffusion models, including Pix2Pix [9], DDPM [8], ResViT [4],
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Table 2. Quantitative results of ablative studies.

TOF-MRA Axial MIP
Methods PSNR ↑ SSIM ↑ RMSE(%) ↓ PSNR ↑ SSIM ↑ RMSE(%) ↓
MMDM 32.6016 0.8741 2.379 24.8344 0.7674 5.872
+LMIP 33.1696 0.8817 2.226 27.0000 0.7903 4.508
+NWAS 33.1019 0.8808 2.241 26.9284 0.7897 4.632
+NWAS, LMIP 33.6237 0.8832 2.128 27.1845 0.7920 4.463

Table 3. Quantitative results of different modality combinations.

Used modality TOF-MRA Axial MIP
T1W T2W FLAIR PSNR↑ SSIM↑ RMSE(%)↓ PSNR↑ SSIM↑ RMSE(%)↓
✓ ✓ 32.8268 0.8756 2.310 26.1274 0.7756 5.049
✓ ✓ 32.6179 0.8553 2.373 25.5160 0.7563 5.426

✓ ✓ 32.0945 0.8640 2.508 25.7678 0.7654 5.237
✓ ✓ ✓ 33.6237 0.8832 2.128 27.1845 0.7920 4.463

BBDM [12], UNest [17], and RDDM [14]. ResViT incorporates multi-modal in-
puts, whereas we employ a gating strategy to integrate multi-modal data as
input for other comparison methods.

Results. Table 1 and Fig. 3 shows quantitative and qualitative results for
comparison and our methods. Our method demonstrates the highest similarity
with both TOF-MRA and axial MIP images. While ResViT achieves good met-
rics on TOF-MRA, its performance on axial MIP images is subpar. In qualitative
result, the vertebral artery of the comparison method was not shown well (blue
arrow in Fig. 3) and the GAN-based methods exhibit issues with mode collapse.
For instance, in UNest, different cases generate identical vascular structures,
and in ResViT, the majority of images exhibit the same noise spots in the cen-
ter (highlighted by the red dashed circle in Fig. 3). Due to the lack of MIP
loss constraint on the maximum values, even though the original TOF-MRA
images perform decently, all comparison methods fail to capture the fine details
of vascular structures in the axial MIP images.

3.2 Ablation Study

We utilize MMDM as the baseline for our model, which directly aggregates the
mean squared errors of the four predictions to construct the loss function. In the
ablation study concerning modalities, we eliminate one modality-specific diffu-
sion module to replicate the scenario of synthesizing TOF-MRA from two modal-
ities. As shown in Table 2 and Table 3, we have the following observations: 1) The
proposed MIP loss substantially enhances vascular continuity, improving PSNR,
SSIM, and RMSE scores on Axial MIP images by 2.1656 dB, 0.0229, 1.319%
compared to baseline; 2) The NAWS facilitates stable model training through
multi-task loss balancing, achieving 2.094 dB higher PSNR; and 3) The multi-
modal ablation study demonstrates that our model with the fusion of three
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modalities achieves superior image quality compared to all combinations of in-
volving two modalities.

4 Conclusion

We have proposed a multi-modal diffusion model for synthesizing TOF-MRA
from multi-modal MR images. Our model establishes deterministic mappings
from multi-source domains to the target, overcoming single-modality translation
limitations. The MIP loss enhances 3D vascular continuity by constraining max-
imum intensity distributions, while the noise-adaptive weight strategy balances
multi-objectives. Experimental results demonstrate that our model significantly
outperforms existing state-of-the-art methods across all metrics. More impor-
tantly, the proposed framework can be seamlessly extended to other multi-modal
medical image generation tasks.
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