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Abstract. Accurate coronary artery segmentation is critical for computer-
aided diagnosis of coronary artery disease (CAD), yet it remains chal-
lenging due to the small size, complex morphology, and low contrast with
surrounding tissues. To address these challenges, we propose a novel seg-
mentation framework that leverages the power of vision foundation mod-
els (VFMs) through a parallel encoding architecture. Specifically, a vision
transformer (ViT) encoder within the VFM captures global structural
features, enhanced by the activation of the final two ViT blocks and the
integration of an attention-guided enhancement (AGE) module, while a
convolutional neural network (CNN) encoder extracts local details. These
complementary features are adaptively fused using a cross-branch varia-
tional fusion (CVF) module, which models latent distributions and ap-
plies variational attention to assign modality-specific weights. Addition-
ally, we introduce an evidential-learning uncertainty refinement (EUR)
module, which quantifies uncertainty using evidence theory and refines
uncertain regions by incorporating multi-scale feature aggregation and
attention mechanisms, further enhancing segmentation accuracy. Exten-
sive evaluations on one in-house and two public datasets demonstrate
that the proposed framework significantly outperforms state-of-the-art
methods, achieving superior performance in accurate coronary artery seg-
mentation and showcasing strong generalization across multiple datasets.
The code is available at https://github.com/d1c2x3/CAseg.

Keywords: Coronary artery segmentation- Vison foundation model- Par-
allel encoding - Variational fusion.

1 Introduction

Coronary artery disease (CAD) is the most common type of heart disease and
a leading cause of global mortality [20]. Given the significant clinical challenges
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Fig. 1. The major challenges of accurate coronary artery segmentation. In (f) and (g),
red, green, and cyan indicate correct, under, and over-segmentation, respectively.

associated with CAD, accurate imaging techniques are critical for early diagno-
sis and effective treatment planning. Coronary computed tomography angiogra-
phy (CCTA) has become as the standard non-invasive modality for evaluating
coronary artery anatomy and pathologies [I5]. Precise segmentation of coronary
arteries in CCTA images is essential for assessing stenosis severity, plaque mor-
phology, and guiding clinical decision-making in CAD management.

Despite advancements in imaging technology, accurate coronary artery seg-
mentation in CCTA images remains challenging due to several inherent factors:
small vessel size (Fig. [I[a)-(b)), low contrast with surrounding tissues (Fig. [Ic)),
and complex vascular morphology (Fig. d)—(e))7 all of which complicate the
task of delineating vascular structures.

Deep learning has shown significant potential in coronary artery segmenta-
tion, offering improved scalability and accuracy. UNet and its variants remain
foundational to many state-of-the-art models [I9J5[7]. For example, 3D-FFR-
UNet [19] improves feature fusion with dense convolutional blocks, while Dong
et al. [7] leverage multi-scale attention to capture finer vessel details. However,
while these convolutional neural network (CNN)-based methods are effective at
extracting local features, they often struggle to preserve the anatomical conti-
nuity of vessels, resulting in fragmented and anatomically inconsistent segmen-
tations, particularly in complex vascular regions (Fig. [I{f)). Vision transformer
(ViT)-based approaches [2610], in contrast, excel at modeling global structural
features but often lack the spatial resolution needed to preserve fine-grained
vascular details essential for delineating thin and tortuous vessels (Fig. g))
Hybrid approaches that combine CNNs and ViTs offer promising solutions. For
instance, Pan et al. [I8] propose a cross-transformer network that integrates
UNet for local features and Transformers for long-range dependencies. Similarly,
Ensembled-SAMs [I] integrates nnU-Net [IT] with SAMs [13] but rely on 2D slice
processing and result merging, neglecting feature-level fusion and 3D inter-slice
continuity.

In this work, we propose a novel segmentation framework that leverages the
power of vision foundation models (VFMs) through a parallel encoding architec-
ture (Fig. [2)). First, the ViT encoder within the VFM [21] captures global struc-
tural features, enhanced by the activation of the final two ViT blocks and the
integration of an attention-guided enhancement (AGE) module, which improves
the model’s ability to capture vascular continuity and topology; meanwhile, the
CNN encoder extracts local details, ensuring a comprehensive representation.
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Fig. 2. Illustrates the pipeline of the proposed framework. It consists of three main com-
ponents. (1) A parallel encoding architecture integrates a 3D foundation model-driven
encoder and a 3D UNet-based shape encoder to extract 3D volumetric representations
from global and local perspectives. (2) A CVF module adaptively fuses these features by
modeling latent distributions and applying variational attention. (3) An EUR module
refines predictions in uncertain regions to enhance segmentation accuracy.

Second, to effectively fuse global and local information, we introduce a cross-
branch variational fusion (CVF) module, which models latent distributions and
applies a variational attention mechanism to adaptively assign modality-specific
weights. Additionally, we design the evidential-learning uncertainty refinement
(EUR) module to quantify segmentation uncertainty using evidence theory and
refine predictions by aggregating multi-scale features and attention mechanisms.
These components collectively enhance segmentation accuracy and robustness,
particularly in complex vascular structures.

2 Methodology

An overview of the proposed framework is shown in Fig. a). It employs a par-
allel encoding architecture, combining a 3D foundation model-driven encoder
(e.g., based on a pre-trained like SAM-Med3D [21I]) with a 3D UNet-based shape
encoder. These two encoders work in parallel to extract complementary 3D volu-
metric representations, capturing global contextual information and local struc-
tural details simultaneously. To enhance global feature perception, the final two
ViT blocks are activated, and an AGE module is integrated (Fig. b)), which
leverages attention mechanisms [7] and a fusion layer to emphasize vascular con-
tinuity and morphology. Next, we introduce a CVF module to fuse these features
obtained from the two encoders. Finally, an EUR module is introduced to refine
predictions in uncertain regions.

The details of our method are elaborated in the following sections.
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2.1 Cross-branch Variational Fusion Module

The CVF module is designed to integrate global and local features extracted
from the ViT and CNN branches. The module comprises two core components:
latent distribution learning and variational attention fusion.

Variational Attention Fusion

@ Sampling

@ Element-wise
sum

Element-wise
multiply

Fig. 3. Structure of the cross-branch variational fusion module. It integrates global and
local features through latent distribution learning and variational attention fusion.Two
encoders F, and F. parameterize the mean and variance of latent distributions, while
FE4, and E,. compute adaptive weights 8, and . for feature fusion.

Latent Distribution Learning. The CVF module employs independent
encoders, F, and E., for the ViT and CNN branches to capture the inherent
variability and complementarity of global and local features. These encoders
utilize multi-layer perceptrons (MLPs) to parameterize the latent distributions
of global (F,) and local (F.) features, modeling them as Gaussian distributions
with learnable means and standard deviations:

py =MLP(F,), o, =MLP(F,), p.=MLP(F,), o,=MLP(F.). (1)

The latent variables Z, and Z. are then sampled as Z, ~ N (g, 0'3) and Z, ~
N (pte,02). To ensure differentiability during training, the reparameterization
trick is applied: Z,, = p, + 0, - €, and Z, = p. + o, - €., where €,, €. ~ N(0,1).

This mechanism enables the CVF module to learn robust feature representa-
tions that account for both deterministic and stochastic variations. Consequently,
the latent variables encapsulate richer contextual information, which is critical
for downstream tasks.

Variational Attention Fusion. The global and local latent features are
integrated using a variational attention mechanism. First, the latent variables
Z, and Z. are processed through MLP-based encoders E,, and F,., generating
intermediate latent distributions: Zu, ~ N(taw,02,) and Zee ~ N(fae, 02,).
Similar to F, and E., these encoders ensure consistent and robust latent fea-
ture representation. Fusion weights (3, 3.) are then computed via the softmax
function: (B,,8.) = Softmax(Zgy, Zac). The final fused feature representation
Fiuse is computed as a weighted combination of the latent variables from both
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Fig. 4. Structure of the evidential-learning uncertainty refinement module. The module
refines segmentation by combining evidential uncertainty modeling, multi-scale feature
fusion, and uncertainty-guided refinement.

branches:
Ffuse - Wm : (/61) : Zv + /Bc : Zc)> (2)

where W, is a learnable weight matrix for optimal feature transformation.
This mechanism adaptively balances global and local contributions, enhanc-
ing the model’s ability to capture both macro- and micro-level vessel structures.

2.2 Evidential-learning Uncertainty Refinement Module

The EUR module enhances segmentation robustness in ambiguous and low-
contrast regions through evidential uncertainty estimation, multi-scale feature
fusion, and uncertainty-guided refinement.

Uncertainty Quantification. Deep models often exhibit overconfidence,
reducing reliability in medical segmentation. To address this, the EUR module
employs evidential learning paradigm based on Subjective Logic theory [12],
modeling uncertainty through evidence rather than direct probabilities.

A Dirichlet distribution [23] is adopted to capture voxel-wise uncertainty,
with the evidence map e computed via a non-negative activation function, Soft-
plus: e = Softplus(F). Here F represents the input feature map. The Dirichlet
parameters are then given by @ = e + 1, where & = [y, ..., ak], and K is the
number of classes. Uncertainty is estimated as: U = %, where S = Zszl oy, de-
notes the Dirichlet strength. This formulation highlights high-uncertainty regions
such as boundaries and low-contrast areas, guiding more informed segmentation.

Multi-scale Feature Fusion. To enhance the network’s ability to capture
contextual information, the EUR module integrates multi-scale features from
different decoder stages. Lower-resolution features are upsampled to align with
higher-resolution ones, followed by progressive fusion:

Ft =

Conv(F;), i=4
: { (F;) F, =Up,i—1(Fh),  (3)

Conv(F;) + Up,o(Ft, ), i=3,2,1"
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where F; denotes features from the i-th scale, Conv(-) denotes a 1x1x1 convo-
lution for channel alignment, and Up,(-) denotes upsampling with a ratio of k.
The fused features are concatenated as F. = Cat(F}, F5, F;, F/), where Cat(-)
denotes the concatenation operation. A spatial attention block (SAB) [14] fur-
ther enhances spatial localization: Frysion = F. + SAB(F.). This fusion strategy
enhances cross-scale interaction and spatial sensitivity, ensuring robust feature
representations.

Uncertainty-guided Refinement. The EUR module refines the segmenta-
tion results by integrating the initial prediction P, uncertainty map U, and fused
features Fiysion- First, a reliable mask M, is constructed to suppress uncertain re-
gions: M, = (P+Fiysion) -exp(—U). Here, exp(—U) suppresses high-uncertainty
areas, focusing on more reliable regions. Next, an attention mechanism [17] adap-
tively highlights important spatial regions by generating a dynamic weight map
A = Sigmoid(Conv(ReLU(M,))), where A € [0,1]. The final refined represen-
tation is obtained as: Fiefined = A+ P + (1 — A) - Frugion, where X balances the
contributions of the initial prediction and fused features to improve accuracy.

2.3 Loss Function

Our training objective integrates a combined segmentation loss (Lseg [6]) and
an evidential regularization loss (Lx1, [28]), which uses a Dirichlet-based term
to guide uncertainty estimation. The total loss is formulated as L = Lgog + LKI,-
The segmentation loss is a weighted sum of Dice and weighted cross-entropy
(WCE) losses, Lseg = YLDice + (1 — 7)LwcE, with v empirically set to 0.6.

3 Experiments and Results

3.1 Datasets and Implementation

Dataset. We evaluated our method on three datasets. CCTA119 is our in-house
dataset, which includes 119 CCTA volumes from a Grade III Level A medical
institution, with a resolution of a x a x bmm? (a € [0.28,0.41], b € [0.5,1.0]) and
a matrix size of 512 x 512 x N (N € [155,353]), annotated by three radiologists
with at least 5 years of experience. The second is the MICCAI 2020 ASOCA
challenge dataset [9], containing 40 CCTA scans. The third, ICAS-100, is a
subset of the ImageCAS dataset [24], consisting of 100 CCTA scans.
Evaluation Metrics. We evaluate our proposed method using two metrics:
dice similarity coefficient (DSC) and average symmetric surface distance (ASSD).
Implementation Details. We evaluated the proposed framework using five-
fold cross-validation on the CCTA119 dataset (95 training, 24 testing subjects),
ASOCA (32 training, 8 testing subjects) and ICAS-100 (80 training, 20 testing
subjects). All experiments were conducted using the PyTorch framework on
NVIDIA 3090 GPUs. The networks were trained with the Adam optimizer, an
initial learning rate of 1x 104, 600 epochs, and a batch size of 2. During training,
sub-volumes of size 160 x 160 x 128 were randomly cropped from the full volumes.
In the testing phase, a sliding window approach with the same sub-volume size
was used, moving in steps of half the window size to cover the entire volume.
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Table 1. Comparison of different methods for coronary artery segmentation.

CCTA119 ASOCA ICAS-100
DSC %1 ASSD mml| DSC %t ASSD mmJl| DSC %1 ASSD mml
3D-UNet[3] [81.65+0.73 1.62+0.12 |84.78+0.85 1.4140.13 |76.17+£1.04 1.574+0.16
S2CA-Net[27]|84.0140.68 1.1240.10 [87.11£0.79 1.1640.13 |78.88+0.87 1.2840.14
1?U-Net [4] [84.5640.64 0.96+0.09 [87.4740.72 0.8540.12 [79.2540.85 1.1240.12
UNETR[I0] (83.22+0.57 1.56+0.11 |86.54+0.82 1.2140.13 |78.64+0.83 1.37+0.14
TransUNet[2]|83.534+0.62 1.52+0.09 [87.384+0.69 1.18+0.11 [78.87+0.82 1.324+0.13
nnFormer|26] [84.61+0.56 1.38+0.11 |87.46+0.67 1.034+0.10 |79.224+0.79 1.154+0.14
CS?Net[16] [84.34+0.61 1.044-0.10 [87.0140.62 0.8840.12 |79.0740.71 1.0940.12
_%]?\I_il[?z] 84.58+0.55 0.91+0.09 |87.124+0.64 0.82£0.10 |78.94+0.83 1.05+0.12
VSNet [22] [85.07+0.51 0.87+0.09 [88.04+0.63 0.79+0.11 |79.194+0.86 1.02+0.13
Ours 87.31+£0.42 0.71+0.08 [90.154+0.57 0.66+£0.09 [82.15+0.73 0.86+0.12

Method

Ground truth Ours VSNet nnFormer 1?U-Net 3D-UNet

Fig. 5. Visual results. The cyan, yellow and green dashed circles highlight the regions
for better visual comparison.

3.2 Comparison with State-of-the-Art Methods

We compared our method against nine state-of-the-art approaches, including
CNN-based methods (3D-UNet [3], S?CA-Net [27], I?U-Net [4]), transformer-
based methods (UNETR [10], TransUNet [2], nnFormer [26]), and vessel segmen-
tation methods (CS®Net [16], 3D-FFR-UNet [§], VSNet [22]). All comparisons
used publicly available codes for fairness. Quantitative and qualitative results are
shown in Table [I]and Fig. 5] respectively, while Table [2] presents cross-validation
results, demonstrating the generalization capability of the proposed method.
Quantitative Results. As shown in Table [I} we conducted extensive com-
parative experiments on CCTA119, ASOCA, and ICAS-100. On CCTA119, our
method consistently outperforms all comparison methods, achieving a 5.66%
higher DSC and a 0.91mm lower ASSD than 3D-UNet, as well as a 2.75% im-
provement in DSC over I2U-Net, the best-performing CNN model. Furthermore,
it surpasses the strongest transformer-based and vessel segmentation methods,
with DSC gains of 2.70% over nnFormer and 2.24% over VSNet. On ASOCA,
our method also achieves the best performance among all compared methods,
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Table 2. Cross-validation results: Model trained on Table 3. Ablation studies of
CCTA119 and tested on ASOCA and ICAS-100. our method on the CCTA119
dataset.

Method CCTA119—ASOCA |CCTA119—ICAS-100

DSC %t ASSD mmJl| DSC %1t ASSD mmJl Net | DSC %1t ASSD mm/]
3D-UNet (79.144+0.81 1.6440.17 [73.55+1.06 1.62+0.18 Net1|82.92+0.53 1.39£0.09
I’U-Net [82.364+0.75 1.1040.11 [75.76+0.87 1.334+0.14 Net2/84.17+0.46 1.1540.08
nnFormer{82.39+0.69 1.0940.12 75.624+0.91 1.35+£0.15 Net3|85.38+£0.44 0.95+0.10
VSNet  [82.67+0.74 1.024+0.13 ({75.87+0.94 1.2840.14 Net4/84.114+0.47 1.12+0.09
Ours 85.261+0.61 0.83+0.11 [78.744+0.82 1.05+0.13 Ours87.31+0.42 0.714+0.08

outperforming VSNet by 2.11% in DSC and 0.13 mm in ASSD. On ICAS-100,
our method performs consistently best among all comparisons, despite potential
labeling errors in the dataset leading to relatively low overall metrics.

Qualitative Results. Fig. 5| provides a qualitative comparison, highlight-
ing that comparison methods exhibit over-segmentation, under-segmentation, or
both, leading to suboptimal performance. In contrast, our method closely aligns
with ground truth, particularly in complex vascular structures, further demon-
strating its effectiveness.

Cross-validation Results. As shown in Table 2] our method demonstrates
superior performance in cross-validation. When trained on the CCTA119 dataset
and tested on the ASOCA dataset, it achieves a DSC of 85.26%, surpassing 3D-
UNet by 6.12% (79.14%) and VSNet by 2.59% (82.67%). Moreover, our method
achieves an ASSD of 0.83 mm, outperforming 3D-UNet by 0.81 mm (1.64 mm)
and VSNet by 0.19 mm (1.02 mm). Consistent results on the CCTA119—ICAS-
100 setup further validate the method’s strong generalization capability.

3.3 Ablation Study

We conduct an ablation study to evaluate the contributions of the key com-
ponents in our proposed method: the Enhanced-ViT (ViT encoder enhanced
by activating the final two ViT blocks and integrating the AGE module), the
CVF module, and the EUR module. Starting from the baseline encoder-decoder
network (Netl) [25], we incrementally integrate the following components: Net2
adds Enhanced-ViT with sum-based fusion, Net3 replaces the sum fusion with
CVF, Net4 extends Netl by adding EUR, and Ours combines all components.

As shown in Table [3] Net2 achieves a 1.25% improvement in DSC over Netl.
Net3 further improves DSC by 1.21% over Net2, while Net4 shows a 1.19%
gain over Netl. By integrating Enhanced-ViT, CVF, and EUR, Ours achieves a
significant DSC improvement of 4.39% over Net1, demonstrating the effectiveness
of each component and their synergistic effects in enhancing the framework.

4 Conclusion

In this study, we propose a novel segmentation framework that leverages the
power of the VFM through a parallel encoding architecture for accurate coronary
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artery segmentation. The framework incorporates: 1) a ViT encoder to capture
global high-level features and a CNN encoder to extract local low-level details,
2) a CVF module for adaptive feature integration via latent distribution mod-
eling and variational attention, and 3) an EUR module to quantify uncertainty
and refine segmentation by incorporating multi-scale feature information and
attention mechanisms. Extensive experiments on in-house and public datasets
demonstrate that our method outperforms state-of-the-art approaches, show-
casing its effectiveness, robustness, and strong generalization capability. These
results highlight its potential for advancing CAD diagnosis and clinical decision-
making.
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