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Deep learning models have shown remarkable performance in medical video
object segmentation. However, addressing the cross-center domain issue is crucial
for achieving consistent performance across different medical facilities. Emerg-
ing Source-Free Active Domain Adaptation (SFADA) techniques can enhance
the performance of target domain segmentation models, ensuring data privacy
and security. While current approaches primarily focus on image-level tasks and
mainly emphasize intra-frame pixel correlations, they overlook temporal cor-
relations, which restricts their performance in video frame recommendation.
Consequently, this paper proposes the first video-level SFADA method and eval-
uates it on video polyp segmentation across different data centers. Specifically,
the Spatial-Temporal Active Recommendation (STAR) strategy is devised to
recommend a few highly valuable frames for annotation by comprehensively
evaluating the object spatial correlation and temporal movement density across
different video frames, along with a Passive Phase Correction (PPC) module is
proposed to suppress the noisy source disruptions of the remaining unlabeled
data during the fine-tuning stage. Experimental results demonstrate that with a
tiny quantity of annotation, our method significantly improves performance over
the lower bound and achieves better performance than existing SOTA methods,
which is valuable for practical clinical employment (link).

Keywords: Source-free active domain adaptation · domain adaptation · multi-
center dataset· video polyp segmentation

1 Introduction

Medical segmentation is crucial for clinical diagnosis and treatment, as it auto-
mates lesion identification, thereby enhancing healthcare efficiency [18,22,24,26].
As an important early detection and treatment technique, deep learning-based
⋆ Q. Wang and L. Zhu are joint corresponding authors.
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video polyp segmentation [12] could help reduce the risk of colorectal cancer.
However, during clinical diagnosis and treatment, the diversity of imaging de-
vices and patient populations may lead to obvious domain shifts [27], which may
result in accuracy degradation. Moreover, the per-frame pixel-wise annotation
for polyp videos could be costly and inefficient.

Unsupervised Domain Adaptation (UDA) [27] can partially alleviate the do-
main gap using labeled source-domain data and unlabeled target-domain data.
However, it overlooks critical issues of data privacy and security. Although
Source-Free Domain Adaptation (SFDA) [28] can alleviate the aforementioned
bottleneck, the accuracy improvement on target domain data could be con-
strained due to the lack of real clinician labels. These challenges hinder the
practical employment in clinical diagnosis and treatment.

Recently, the emerging Source-Free Active Domain Adaptation (SFADA)
paradigm [13,14,21,23] could mitigate domain shift while ensuring data privacy
by annotating only a small set of actively selected target-domain samples. This
approach achieves superior performance compared to traditional UDA methods.
By minimizing manual annotations, SFADA could reduce clinicians’ workload
and annotation costs, making it highly practical for real-world medical applica-
tions. However, previous SFADA methods [14, 21, 23] primarily focus on image-
level tasks and mainly emphasize intra-frame pixel correlations but overlook
temporal correlations, restricting their performance in video frame recommen-
dation.

Therefore, we propose the first SFADA method specifically designed for med-
ical video object segmentation. To evaluate our method, we assembled a multi-
center video polyp segmentation (MC-VPS) dataset by leveraging and integrat-
ing existing open-source medical imaging resources [1, 2, 7].

The main contributions of this work can be summarized as follows:

– To the best of our knowledge, we propose the first SFADA method for med-
ical video object segmentation and conduct a leading exploration of multi-
center video polyp segmentation scenarios.

– We devise a Spatial-Temporal Active Recommendation (STAR) strategy
that systematically evaluates the object’s spatial correlation and temporal
movement density across spatial and temporal dimensions. By doing so, we
can actively recommend and annotate the most unreliable video frames,
thereby broadening the knowledge boundary of the target model.

– We further propose the Passive Phase Correction (PPC) module to collab-
oratively leverage the rest of the unlabeled video frames by suppressing the
noisy source disruptions. This synergizes with STAR’s active annotation to
ensure comprehensive utilization of both labeled and unlabeled data.

– We organize the first multi-center video polyp segmentation dataset (MC-
VPS) to conduct research on this topic. Extensive experimental results
demonstrate that our method achieves better segmentation performance
than existing methods, which is valuable for clinical practice.
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Fig. 1. Overview of the proposed video-based SFADA method. The first row of the
gray area represents the source domain training stage. Then the second row of red
area represents our proposed STAR strategy that recommends and annotates valuable
video frames. The third row of the blue area represents the target domain fine-tuning
using the combined pseudo-label.

2 Method

2.1 Problem setting

Given a sequence of video dataset D which contains video frames X and their
corresponding masks Y . To protect data privacy and security, Source Free Ac-
tive Domain Adaptation (SFADA) methods prohibit the accessibility of source
domain datasets Ds to generate target domain prediction Yt, which only selects
a few highly valuable target domain frames Xt for annotation to achieve an ideal
segmentation performance. Ideal SFADA methods should achieve better target
domain segmentation results with a lower selection quantity.

2.2 Pipeline of our SFADA

Recent SFADA methods [14, 21, 23] primarily focus on image-level tasks and
mainly emphasize intra-frame pixel correlations but overlook temporal correla-
tions, restricting their performance in video frame recommendation. This not
only wastes valuable annotation resources but also ultimately degrades the tar-
get domain performance.

Therefore, we propose the first video-level SFADA method to select tiny
valuable video frames XAt and then integrate their actively annotated labels
YAt into refined pseudo-labels YRt for target model Mt fine-tuning. 1) As
depicted in the first row of the gray area in Fig. 1, the segmentation model is
first trained on the source domain dataset [Xs,Ys ∈ Ds] to obtain the source
domain model Ms. 2) For the second row of the red area, the frozen source model
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Ms is utilized to predict target domain pseudo-label Yst. Then, the Spatial-
Temporal Active Recommendation (STAR) strategy is proposed to annotate
a few highly valuable video frames by systematically evaluating the object’s
spatial correlation and temporal movement density across spatial and temporal
dimensions. Then, the Passive Phase Correction (PPC) module is proposed to
collaboratively leverage the rest of the unlabeled frames by suppressing the noisy
disruptions. This complements STAR’s active annotation strategy, ensuring the
comprehensive utilization of both labeled and unlabeled target domain data.
3) For the third row of the blue area, the actively annotated labels YAt and
remaining pseudo-labels Yst are combined as the refined pseudo-label YRt, which
is then utilized to fine-tune the target domain model Mt.

2.3 Spatial-Temporal Active Recommendation (STAR) strategy

Here we will elaborate on our STAR strategy that comprehensively evaluates
the object’s spatial correlation and temporal movement density across spatial
and temporal dimensions to recommend a few highly valuable video frames.
Cascaded Convincing Prediction Considering that medical datasets often
require comprehensive evaluation from multiple experienced physicians, we lever-
age the multi-layer decoder output features to produce more convincing target
domain pseudo-labels Yst along with their uncertainty maps Ust that is more
consistent with the actual annotation method of medical data:

Yst = [

G∑
g=1

(Y g
st ⊗ Ug

st)]/G, Ust = [

G∑
g=1

H∑
h=1

W∑
w=1

(Ughw
st )]/G. (1)

where ⊗ denotes the pixel multiplication, G is the number of multi-layer decoder
output features, Y g

st and Ug
st are their output features and uncertainty maps.

Temporal Diversity Centering Recent SFADA [14, 21, 23] methods mainly
focus on image-level tasks, which may lead to sub-optimal frame recommenda-
tions due to the lack of spatial-temporal representations, ultimately undermining
segmentation performance.

In order to break through the spatial-temporal limitation aforementioned,
we propose to first cluster the target domain samples Xt into Q clusters, then
recommend the most valuable frame from each clustering center Cq:

{C1, C2, . . . , CQ} =

Q∑
q=1

∑
xt∈Cq

|xt − µq|2, (2)

where Q denotes the number of clusters, Cq denotes the q-th cluster, xt denotes
the target domain video frame, and µq denotes the centroid of the q-th cluster [4].
K-order Spatial-Temporal Reliability To systematically evaluate the ob-
ject’s spatial correlation and temporal movement density across spatial and
temporal dimensions, we propose to calculate the Spatial-Temporal Reliability
∆k(

nRst) and recommend the most unreliable video frames, thereby broadening
the knowledge boundary of the target model.
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Given the target domain frame nXt with its frame number n in the video
sequence N , along with its uncertainty map nUst. The Spatial-Temporal Relia-
bility nRst for the target domain frame nXt can be calculated as:

nRst = [

H∑
h=1

W∑
w=1

(nUst + |nXt −n−1 Xt|)]/(H ×W ). (3)

where nUst denotes the uncertainty map of the n-th frame , nXt denotes the
n-th frame, and n−1Xt denotes the (n-1)-th frame.

Although nRst can evaluate the quality of each individual frame along both
the spatial and temporal dimensions, we consider it may lack the ability to eval-
uate the fluctuation degrees of these segmentation qualities from the temporal
perspective, as frames with larger fluctuation degrees may exhibit controversy.
Hence, we further apply the differential operator to the Spatial-Temporal Reli-
ability (∆k(

nRst)) and quantify the fluctuation degree [9, 20]:

∆k(
nRst) =

{
nRst, if k = 0

∆k(
nRst)−∆k−1(

nRst), if k > 0
(4)

where ∆k denotes the K-order Difference calculation.

2.4 Passive Phase Correction (PPC) module

Although afore proposed STAR strategy could bridge the domain gap by rec-
ommending a few valuable frames, the remaining unlabeled samples still contain
the source domain knowledge bias.

Hence, we propose the PPC module to collaboratively leverage the rest of the
unlabeled video frames by suppressing the noisy disruptions. This synergizes with
STAR’s active annotation to ensure comprehensive utilization of both labeled
and unlabeled data.

As shown in Fig. 1, the encoder feature map is first projected into the
frequency domain to obtain its corresponding phase and amplitude spectrum,
Φ(u, v) and M(u, v). The phase feature and amplitude feature hold the struc-
tural prior and texture information [3, 5] of the image feature as understood by
the source model Ms, respectively. Hence, a learnable matrix WΦ is utilized dur-
ing the target domain fine-tuning that can suppress negative components and
emphasize valuable components related to the target domain [8]:

Φ̂(u, v) = Φ(u, v)⊗ S
(
WΦ

)
. (5)

where S denotes the sigmoid operation, ⊗ denotes the multiply operation and
WΦ denotes the learnable weight matrix. Then frequency components are passed
through the IFFT [17] to generate the spatial domain feature X̂ for the decoder:

X̂ = IFFT (M(u, v)eiΦ̂(u,v)). (6)
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Table 1. Quantitative analysis of the Multi-Center Domain Adaptation Video Polyp
Segmentation dataset (MC-VPS).

Source/
Target Dataset Minimum

Resolution
Maximum
Resolution

Pixel-wise
Annotation

Source CVC-ColonDB [2] 574x500 574x500
√

Center A CVC-ClinicDB [1] 384x288 384x288
√

Center B SUN-SEG [7] 1158x1008 1240x1080
√

Center A Center B

clinic sunsegcolon

Source Domain Center A Center B

Fig. 2. Visualization of the domain gap between different data centers.

3 Experiments

3.1 Dataset & Implementation

Due to the lack of a public multi-center video polyp segmentation dataset, to val-
idate our method, we organize a multi-center video polyp segmentation dataset
(MC-VPS) by integrating existing open-source medical imaging resources [1,
2, 7]. As shown in Table 1, this dataset includes CVC-ClinicDB [1, 15], CVC-
ColonDB [2], and SUN-SEG [7]. Fig. 2 further visualizes the domain gap be-
tween different centers. Then, following previous SFADA works [14, 21, 23], we
compare with the SFADA and SFDA methods for a comprehensive compari-
son and further report their segmentation performance in Table 2 and Table 3.
CVC-ColonDB is used as the source domain dataset Ds. CVC-ClinicDB and

SUN-SEG are used as the Center A and Center B target domain datasets. Fol-
lowing previous video polyp segmentation works [7], four popular evaluation
metrics are used to evaluate the performance of these methods, including Sα,
Emn

θ , Jaccard, and Dice. For consistency, our method and compared SFADA
methods are re-implemented using the popular STM memory block [16] for the
Segformer backbone [25] with the normal DDIM process [11, 19, 29] as the seg-
mentation architecture to evaluate these methods. We implement our method
using PyTorch and an RTX 3090 GPU. Image size and learning rate are set to
240× 240 and 1e-4. Adam optimizer is used to minimize the Dice and BCE loss.

3.2 Experimental Results

Table 2 and Table 3 quantitatively report the experimental results across differ-
ent video polyp data centers, including the lower bound (source model without
fine-tuning) and upper bound (source model fine-tuned with all target-domain
labels), and various state-of-the-art methods. Fig. 3 qualitatively compares the
segmentation results of our method with recent state-of-the-art methods. It is
obvious from Table 2 and Table 3 that notable performance disparities exist
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Table 2. Quantitative comparison on Dice and Jaccard of our method and other state-
of-the-art methods on the MC-VPS.

Dice (mean%±var) Jaccard (mean%±var)
Methods Center A Center B Overall Center A Center B Overall

Lower bound 67.39±0.029 58.30±0.041 62.85±0.035 60.29±0.044 52.85±0.036 56.57±0.040
Upper bound 79.44±0.005 71.33±0.060 75.39±0.033 69.17±0.009 62.54±0.071 65.86±0.040

FSM [28] 70.18±0.033 60.69±0.049 65.44±0.041 59.87±0.054 49.79±0.044 54.83±0.049
Random 69.82±0.041 60.22±0.046 65.02±0.044 59.18±0.042 48.79±0.059 53.99±0.051
LC [6] 71.12±0.017 61.06±0.043 66.09±0.030 60.30±0.034 49.15±0.039 54.73±0.037

SALAD [10] 71.80±0.013 63.79±0.042 67.80±0.028 61.10±0.030 52.05±0.037 56.58±0.034
UGTST [14] 74.46±0.014 63.35±0.039 68.91±0.027 64.34±0.025 52.48±0.054 58.41±0.040

CUP [23] 73.99±0.013 64.75±0.051 69.37±0.032 63.41±0.019 52.68±0.047 58.05±0.033
STDR [21] 72.98±0.011 62.53±0.035 67.76±0.023 61.27±0.018 49.98±0.025 55.63±0.022

Ours 76.42±0.010 66.42±0.042 71.42±0.026 66.00±0.014 56.33±0.043 61.17±0.029

Table 3. Quantitative comparison on Sα and Emn
θ of our method and other state-of-

the-art methods on the MC-VPS.

Sα (mean%±var) Emn
θ (mean%±var)

Methods Center A Center B Overall Center A Center B Overall
Lower bound 75.33±0.016 71.55±0.013 73.44±0.015 81.35±0.027 77.26±0.021 79.31±0.024
Upper bound 83.46±0.04 80.80±0.013 82.13±0.027 90.10±0.015 85.28±0.032 87.69±0.024

FSM [28] 77.54±0.018 73.04±0.018 75.29±0.018 81.82±0.026 77.33±0.025 79.58±0.026
Random 77.30±0.009 73.10±0.015 75.20±0.012 82.91±0.032 78.94±0.020 80.93±0.026
LC [6] 77.88±0.009 72.99±0.016 75.44±0.013 83.25±0.011 79.46±0.024 81.36±0.018

SALAD [10] 78.30±0.007 74.42±0.013 76.36±0.010 83.85±0.007 79.55±0.020 81.70±0.014
UGTST [14] 79.97±0.007 75.63±0.013 77.80±0.010 86.44±0.008 81.26±0.016 83.85±0.012

CUP [23] 80.19±0.006 75.48±0.019 77.84±0.013 85.46±0.006 78.18±0.027 81.82±0.017
STDR [21] 78.17±0.005 73.22±0.012 75.70±0.009 85.52±0.004 77.63±0.022 81.58±0.013

Ours 81.33±0.005 77.53±0.013 79.43±0.009 87.39±0.004 83.05±0.020 85.22±0.012

between the lower and upper bounds across various popular evaluation metrics.
Especially for the case of Dice, the overall performance gap exists from 62.85% to
75.39%. We further evaluate our method against various recent state-of-the-art
methods under identical video object segmentation (VOS) architectures and ex-
perimental conditions, all evaluated methods are assigned the same experimental
setup with 5% target-domain labeled data. Compared with recent SOTA meth-
ods that focus mainly on spatial dimension selection, our strategy demonstrated
better segmentation performance on popular evaluation metrics, all underscoring
the efficiency of our spatial-temporal-based approach augmented by the STAR
selection strategy and PPC module.

3.3 Ablation Studies

As shown in Table 5, we conduct various ablation experiments on the MC-VPS
dataset to evaluate the effectiveness of each component in our proposed method.
We consider four baseline networks: 1) M1 randomly selects video frames and
then performs pixel-wise annotation, 2) M2 incorporates the STAR strategy
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Table 4. Ablation study for our proposed modules on target
domain Center B

.

Methods Dice Jaccard Sα Emn
θ

M1 60.22±0.046 48.79±0.059 73.10±0.015 78.94±0.020
M2 64.19±0.035 53.99±0.034 76.15±0.012 80.59±0.020
M3 65.24±0.042 53.84±0.046 75.47±0.013 80.17±0.019

Ours 66.42±0.042 56.33±0.043 77.53±0.013 83.05±0.020

Table 5. Ablation study for the annotation percentage on target
domain Center B.

Methods Dice Jaccard Sα Emn
θ

2% 62.46±0.041 50.93±0.038 73.91±0.014 79.23±0.019
5% (Ours) 66.42±0.042 56.33±0.043 77.53±0.013 83.05±0.020

10% 68.55±0.047 58.63±0.042 77.55±0.013 85.70±0.014
15% 70.35±0.062 61.71±0.054 80.65±0.016 85.35±0.031
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Fig. 3. Visual comparisons of our proposed method and recent SOTA methods. Our
method could more accurately and consistently segment the video polyps.

without the Difference calculation. 3) M3 replaces the random selection strategy
with STAR and Difference calculation. 4) M4 is constructed by further adding the
PPC module. Note that M2 and M3 are parallel ablation settings based on M1,
not progressive experimental settings. M3 introduces no new modules and aims
to verify the impact of different Spatial-Temporal Reliability representations,
rather than ablating the Difference operation alone. We can find that M2 and M3
outperform M1, and Model Ours achieves better performance than other ablation
models. Note that SFADA is an offline task to recommend valuable frames for
clinical annotation, and the recommendation speed of STAR is 20.8 FPS. Hence,
it will not affect the practical annotation process, and has the potential to save
95% of the clinical annotation workload and achieve performance close to full
annotation. Table 4 reports the impact of different active annotation ratios on
the segmentation results. We can find that a larger active annotation ratio (15%)
can improve the model segmentation results.

4 Conclusion

In this paper, we propose the first video-level SFADA method and evaluate
it on video polyp segmentation across different data centers. Considering that
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recent SFADA methods mainly focus on image-level tasks, which may have the
limitations of spatial-temporal representations. Hence, we propose the STAR
strategy to efficiently recommend valuable video frames, along with the PPC
module to suppress the source noisy component that is irrelevant to the target
domain. Moreover, we built the MC-VPS dataset to facilitate related research.
Experimental results demonstrate that our method achieves better performance
than recent SOTA methods.
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