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Abstract. Chest X-ray diagnosis models face domain generalization
challenges due to cross-institutional variations in imaging protocols and
scanner specifications, which degrade diagnostic accuracy on unseen do-
mains. To address this, we propose a domain-invariant learning frame-
work leveraging the inherent anatomical consistency of medical imaging.
Our method first applies a Neighborhood-Consistent Binarization Trans-
formation (NCBT) to convert grayscale images into topology-preserving
high-dimensional binary tensors, encoding pixel intensity relationships
within local neighborhoods to strip device-specific textures while retain-
ing anatomical structures. These tensors are then reconstructed into an
intermediate domain via an Intermediate Domain Style-preserving Au-
toencoder (IDSP-AE), decoupling structural information from domain-
specific features. Crucially, our framework aligns domains without requir-
ing target domain data during training, leveraging anatomical consis-
tency. Experiments on four public datasets show superior generalization
and improved diagnostic accuracy compared to state-of-the-art methods.
The source code is available at https://github.com/LZL501/NCBT.

Keywords: Chest X-ray · Domain Generalization · Relative Intensity
Relationship.

1 Introduction

Chest X-ray remains the most widely used clinical imaging technique for pul-
monary disease detection [21,16,26] thanks to its efficiency, low cost, and acces-
sibility. Recent advances in deep learning technology have enabled automated
disease diagnosis from chest X-ray images with promising results. Yet, deep learn-
ing models trained on data from one institution often suffer from performance
degradation when applied to data from new institutions, primarily due to domain
shifts caused by differences in imaging devices and protocols across hospitals.
This challenge significantly limits the real-world deployment of these models.
To address this issue, previous research has developed two primary approaches:
Domain Adaptation (DA) [3,5,19] and Domain Generalization (DG) [31,17,23].
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Domain adaptation(DA) aims to adapt models trained on a source domain to
a target domain with unknown annotations. Techniques like Generative Adver-
sarial Networks (GANs) [4] and their variants, such as CycleGAN [30], are com-
monly used to either learn domain-invariant features or translate image styles
between source and target domains. However, GAN-based DA methods [13,25]
rely on access to target domain data during training, which means they primar-
ily handle known target domains, limiting their flexibility. Additionally, during
the image synthesis process, GAN-based DA methods may alter pathological
features [15], potentially leading to misdiagnosis. On the other hand, domain
generalization seeks to improve a model’s ability to generalize to unseen domains
during training, without requiring target-domain data. Recent approaches [28,20]
have explored style manipulation and neural encoding to overcome domain shifts,
demonstrating improvements in robustness. However, DG methods still face chal-
lenges in addressing significant distribution differences across diverse medical
imaging data sources. First, aggressive style alteration may corrupt diagnosti-
cally critical anatomical patterns. Furthermore, existing medical DG approaches
focus excessively on global statistical alignment, overlooking the fundamental lo-
cal anatomical relationships that remain consistent across imaging devices and
play a pivotal role in enhancing generalization capabilities [14].

Based on the consistency of relative intensity relationships between neighbor-
ing pixels in chest X-rays, we propose a novel transformation called Neighborhood-
Consistent Binary Transformation (NCBT) to alleviate domain-specific style
information. Unlike conventional style normalization techniques that rely on
heuristic assumptions, NCBT operates by exhaustively encoding each pixel’s
intensity relative to all neighbors within a sliding window, generating high-
dimensional binary tensors where domain-sensitive intensity distributions are
discarded while anatomical topology is preserved. This transformation achieves
an unification: multi-institutional chest X-rays with heterogeneous styles (e.g.,
varying contrast/brightness) are mapped to a single, domain-agnostic represen-
tation space, inherently mitigating domain shifts without requiring adversarial
training or target domain data.

To harness NCBT’s domain-invariant representations while retaining clini-
cally interpretable visuals, we further design the Intermediate Domain Style-
Preserving Autoencoder (IDSP-AE). Trained solely on a style-neutral intermedi-
ate domain, this network reconstructs NCBT’s binary tensors into diagnostically
actionable images that exhibit consistent intermediate-domain styling. Crucially,
when deployed on both source and unseen target domains, the IDSP-AE acts
as a universal translator: it reprojects all inputs into this unified style space,
effectively neutralizing device-specific biases while preserving pathology-critical
intensity contrasts. Experimental results on four public chest X-ray datasets for
pulmonary disease diagnosis demonstrate that our method significantly improves
baseline performance, validating its effectiveness.
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Fig. 1. (a) Training process of the proposed IDSP-AE. (b) Diagram of our method
combined with other diagnostic models. In the diagram, Source (I), Source (B), and
Source (IR) represent the original source domain image, the multi-channel tensor ob-
tained via NCBT, and the reconstructed image with intermediate domain style, respec-
tively. Target (I), Target (B), and Target (IR) follow the same structure. Note that
in diagram (b), B represents the visualization of the multi-channel binary tensor after
converting it to decimal and normalizing, which is conceptually identical to B in (a).

2 Method

2.1 Overview

Inherent differences in imaging devices lead to significant stylistic variations
among chest X-ray datasets from different medical centers, causing pulmonary
disease diagnosis models that perform well on source domains to often fail gener-
alizing to unseen target domains. To address this, we propose the Neighborhood-
Consistent Binary Transformation (NCBT) – a novel transformation that alle-
viates domain-specific style information from both source and target domains.
The processed multi-channel tensors generated by NCBT are then reconstructed
into intermediate-domain-style single-channel images using an Intermediate Do-
main Style-Preserving Autoencoder (IDSP-AE). This unified representation ef-
fectively mitigates cross-domain discrepancies. As shown in Figure 1(b), our
framework serves as a plug-and-play preprocessing module for standard diag-
nostic workflows: both training and test sets undergo NCBT and IDSP-AE re-
construction, producing style-harmonized images aligned with the intermediate
domain. Subsequent diagnosis models trained/tested on these normalized images
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Fig. 2. Illustration of the Proposed Neighborhood-Consistent Binary Transformation.
A 3 × 3 patch (colored pixels in the image) from a chest X-ray image is used as an
example, with the neighborhood size N = 3. During NCBT, each pixel in the patch
undergoes intensity comparisons with its eight neighboring pixels within the sliding
3×3 window (shown as nine 3×3 regions centered on colored pixels). Binary values
(0/1) are assigned to new channels based on these comparisons: red arrows indicate
higher intensity in neighboring pixels compared to the center pixel, while green arrows
denote the reverse.

exhibit enhanced generalization capabilities without architectural modifications.
The following sections detail each component of our approach.

2.2 Neighborhood-Consistent Binary Transformation

Although chest X-ray datasets from different medical centers exhibit stylistic
variations due to disparities in imaging protocols, the relative intensity rela-
tionships between neighboring pixels maintain domain-invariant consistency for
identical anatomical structures. Leveraging this property, we propose a novel
robust representation transformation named Neighborhood-Consistent Binary
Transformation (NCBT). This approach converts input grayscale images into
multi-channel binary tensors encoding neighborhood ordinal relationships.

Specifically, as illustrated in Figure 2, given an input grayscale image I ∈
RH×W , NCBT compares each pixel with the N ×N neighboring pixels, exclud-
ing the center pixel, to evaluate the relative intensity. If the intensity of the center
pixel is greater than that of a neighboring pixel, the binary value 1 is assigned;
otherwise, 0 is assigned. This binary value is then assigned to the corresponding
channel in the transformed multi-channel binary tensor. Each spatial position
in the neighborhood corresponds to a unique channel in the transformed binary
tensor. Thus, NCBT transforms the input grayscale image I ∈ RH×W into a
multi-channel binary tensor B ∈ {0, 1}H×W×(N2−1) through local ordinal com-
parisons. For each pixel (i, j), the transformation is formally defined as:
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B(i, j, c(k,l)) =

{
1 if I(i, j) > I(k, l)

0 otherwise
, (1)

where:

– N (i, j) = {(k, l) | (k, l) ∈ WN (i, j)\{(i, j)}} denotes the N×N neighborhood
window centered at (i, j), excluding the center pixel.

– c(k,l) ∈ {1, ..., N2 − 1} maps each neighbor position to a unique channel
index.

– WN (i, j) represents the N ×N sliding window:

WN (i, j) =

{
(i+m, j + n)

∣∣∣ m,n ∈
[
−
⌊
N

2

⌋
,

⌈
N

2

⌉]}
. (2)

As formalized in Equation (1), the proposed NCBT is independent of absolute
pixel intensity values, relying solely on relative intensity relationships between
each pixel and its neighbors. By discarding domain-sensitive stylistic attributes
(e.g., global contrast, brightness), this design effectively mitigates inter-domain
discrepancies among input images while preserving diagnostically critical ordinal
patterns.

2.3 Intermediate Domain Style-Preserving Autoencoder

Building upon NCBT’s generation of domain-agnostic binary tensors B de-
scribed in Section 2.2, we introduce the Intermediate Domain Style-Preserving
Autoencoder (IDSP-AE) to reconstruct these tensors into style-normalized im-
ages IR ∈ RH×W . As depicted in Figure 1(a), IDSP-AE employs a U-Net [12]
backbone with skip connections to preserve fine anatomical details. During train-
ing, the network learns to decode B into images that conform to to a style-neutral
intermediate domain by minimizing pixel-wise reconstruction error:

LMSE =
1

HW

H∑
i=1

W∑
j=1

(IR(i, j)− I(i, j))
2
, (3)

where H and W respectively represent the height and width of I.
A critical design principle lies in our intermediate domain construction: the

IDSP-AE is trained on a dedicated, large-scale chest X-ray dataset disjoint from
both source and target domains used in downstream diagnostic tasks. This
strategic isolation ensures the intermediate domain serves as a stylistic ‘neu-
tral ground’ devoid of domain-specific biases. Through training, IDSP-AE learns
to reconstruct NCBT-generated binary tensors B into images IR that impose
intermediate-domain styling – effectively acting as a universal style filter.

During deployment, both source domain training data and unseen target do-
main test data first undergo NCBT transformation to remove device-dependent
styles, then pass through the frozen IDSP-AE to synthesize images exhibiting
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unified intermediate-domain features. This two-step process bridges the domain
gap by ensuring all input images share identical stylistic characteristics while
preserving NCBT-encoded anatomical accuracy. Consequently, downstream di-
agnostic models encounter only anatomy-centered representations, alleviating
the need for domain-invariant feature learning and significantly boosting cross-
domain generalization.

3 Experiments

3.1 Datasets and Implementation Details

Datasets. We employ the ChestX-ray8 dataset [22] (108,948 chest X-ray im-
ages) as the training set for the IDSP-AE, constituting the intermediate domain
described in Section 2.2. For baseline comparison, we adopt CheXzero [18]– a
state-of-the-art vision-language model for chest X-ray diagnosis – following its of-
ficial training protocol. The MIMIC-CXR dataset [7] (377,110 image-text pairs)
serves as the source domain for training the vision-language diagnostic model.
To evaluate cross-domain generalization, we utilize four publicly available bench-
mark datasets for testing: CheXpert [6], ZhangLab [8], VinDr-CXR [10], and
RSNA Pneumonia Detection Challenge [1], which are referred to as the unseen
target domains.
Implementation Details. We choose the previously well-performing visual lan-
guage model CheXzero [18] for chest X-ray disease diagnosis as the baseline. Our
framework is integrated as a plug-and-play preprocessing module into CheXzero
without modifying its architecture. To ensure fair comparison, all DG methods
(including our augmented CheXzero) strictly follow CheXzero’s original training
protocol. Additionally, the proposed IDSP-AE is a simple U-Net [12] network,
trained for 30 epochs with a batch size of 128. The Adam optimizer is used to
optimize the network parameters, with a learning rate set to 1e-4. The neighbor-
hood window size N for the NCBT transformation is set to 15. All experiments
are conducted using four GeForce RTX 3090 GPUs.

3.2 Main Results

Table 1 and Table 2 present the quantitative evaluation results on four public
datasets. It is important to note that the Zhanglab [8] and RSNA [1] datasets in
Table 1 are binary classification datasets (containing only pneumonia and normal
classes), while the CheXpert [6] and VinDr-CXR [10] datasets in Table 2 contain
multiple disease categories. On the Zhanglab dataset, compared to the baseline
model CheXzero, our method improves AUC, ACC, and F1 by 7.5%, 7.1%, and
5.0%, respectively. On the RSNA dataset, the improvements are 2.4%, 0.7%, and
0.5%, which are higher than other plug-and-play methods [28,24,2,27,9,11]
designed to enhance network generalization.

For multi-class datasets in Table 2, previous methods like MixStyle [28] de-
grade performance because their implicit style mixing, which is effective for
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Table 1. Quantitative Evaluation Results on the Zhanglab [8] and RSNA [1] Datasets.
The ‘+’ indicates that the baseline model CheXzero is combined with the plug-and-
play method following the ‘+’. The highest result in each column is highlighted in bold.

Methods Zhanglab Dataset [8] RSNA Dataset [1]
AUC(%) ↑ ACC(%)↑ F1(%)↑ AUC(%)↑ ACC(%)↑ F1(%)↑

CheXzero [18] 87.5 80.6 84.9 94.8 85.9 87.3
+pAdaIN [11] 94.0 85.4 85.4 95.5 84.5 86.0
+EFDMix [24] 94.0 86.1 88.9 96.5 86.4 87.5
+DSU [9] 94.5 86.7 89.6 96.3 86.0 86.9
+TriD [2] 94.2 86.8 87.7 96.9 84.7 86.4
+MixStyle [29] 92.9 84.5 86.5 96.5 85.9 87.8
+Morestyle [27] 92.4 85.3 86.7 95.4 84.9 86.8
+Ours 95.0 87.7 89.9 97.2 86.6 87.8

Table 2. Quantitative Evaluation Results on the CheXpert [6] and VinDr-CXR [10]
Datasets. The highest result in each column is highlighted in bold.

Methods CheXpert Dataset [6] VinDr-CXR Dataset [10]
AUC(%) ↑ ACC(%)↑ F1(%)↑ AUC(%)↑ ACC(%)↑ F1(%)↑

CheXzero [18] 88.2 77.7 51.0 65.4 72.1 22.0
+pAdaIN [11] 85.0 71.4 44.9 69.2 74.5 22.6
+EFDMix [24] 84.0 72.3 50.3 65.8 74.9 21.9
+DSU [9] 85.3 73.6 45.5 70.5 66.0 19.1
+TriD [2] 88.5 77.8 49.6 67.0 74.5 20.6
+MixStyle [29] 84.1 78.5 47.5 67.4 74.0 22.1
+Morestyle [27] 86.2 71.6 50.9 68.3 73.7 22.0
+Ours 88.8 78.3 54.1 71.4 75.6 22.7

natural images, blurs medically critical boundaries in chest X-rays. Disease fea-
tures (e.g., localized opacities, effusions) are inherently tied to intensity patterns,
which style randomization inadvertently distorts. In contrast, our NCBT-based
approach alleviates style variability while preserving pathological semantics, en-
abling consistent multi-class diagnosis across domains.

As demonstrated in our experiments, compared to other plug-and-play DG
methods, our approach substantially reduces domain shifts across chest X-ray
datasets by unifying the style space between source domains and unseen target
domains. This leads to robust improvements and state-of-the-art performance
on all four downstream datasets, confirming the effectiveness and strong gener-
alization capability of our method.

3.3 Ablation Study

Ablation Study on the Neighborhood Size N in NCBT. We conduct
an ablation study on the neighborhood size N involved in NCBT (i.e., N in
Equation (2)) using the Zhanglab dataset. As Table 3 demonstrates, enlarging
N broadens the receptive field for ordinal intensity comparisons, enhancing local
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Table 3. Ablation study on Neighborhood Size N in NCBT on Zhanglab dataset [8].

Neighborhood Size N AUC(%) ↑ ACC(%) ↑ F1(%) ↑
3 89.2 81.4 84.9
7 90.0 83.4 86.7
11 92.1 85.5 88.4
15 95.0 87.7 89.9

Table 4. Ablation study on the proposed NCBT on the Zhanglab dataset [8].

NCBT IDSP-AE AUC(%) ↑ ACC(%) ↑ F1(%) ↑
- - 87.5 80.6 84.9
- ✓ 88.0 81.1 85.0
✓ ✓ 95.0 87.7 89.9

structural encoding in B and improving diagnostic metrics. However, increasing
N also increases the number of parameters in the IDSP-AE and results in greater
computational cost. When N exceeds 15, both the training cost and inference
speed of IDSP-AE become prohibitively expensive. Thus, we select N = 15 as the
optimal trade-off between performance and efficiency for practical deployment.

The Necessity of NCBT. We validate the necessity of NCBT through an ab-
lation study. We train the IDSP-AE using original images from ChestX-ray8 [22]
to reconstruct the input images, then fed raw images from the source and target
domains into the trained IDSP-AE for intermediate-domain style transfer. The
results are shown in the second row of Table 4. Compared to our proposed full
pipeline (NCBT + IDSP-AE), using IDSP-AE alone yielded suboptimal results,
achieving only marginal improvements over the baseline. This gap arises because
raw images retain scanner-specific textures (e.g., high-frequency noise, contrast
variations) that IDSP-AE cannot fully normalize. NCBT’s neighborhood ordi-
nal encoding fundamentally removes these domain-specific features, making it
indispensable for effective style unification.

4 Conclusion

To address domain shifts in chest X-ray diagnosis caused by cross-institutional
imaging heterogeneity, we propose a physiology-driven framework that lever-
ages anatomical consistency across domains. Our Neighborhood-Consistent Bi-
narization Transformation (NCBT) encodes images into domain-invariant binary
tensors through localized ordinal intensity comparisons, while an Intermediate
Domain style-preserving autoencoder reconstructs intermediate-domain-aligned
images. This approach alleviates device-specific stylistic variations without re-
quiring target domain data. Experiments on four public datasets demonstrate
superior generalization performance over state-of-the-art methods, validating its
effectiveness as a plug-and-play solution for clinically deployable AI diagnostics.
The modular design allows integration with existing diagnostic systems without
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requiring extra data effort. This work addresses the gap between AI models and
clinical deployment by disentangling clinically relevant features from domain-
specific features. In the future, we would like to replace the fixed center-based
ordinal encoding in current NCBT with other more robust pairwise settings,
further enhancing robustness against local noise artifacts while preserving struc-
tural semantics.

Acknowledgments. This work was supported partially by the National Key Re-
search and Development Program of China (2023YFC2705700), NSFC 62222112,
62176186, and 62225113, the NSF of Hubei Province of China (2024AFB245),
the Special Fund for Central Guidance on Local Science and Technology De-
velopment from the Sichuan Provincial Department of Science and Technology
(2024ZYD0285), the Key Research and Development Program of Dazhou Science
and Technology Bureau (24ZDYF0005).

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article

References

1. rsna challenge. www.kaggle.com/c/rsna-pneumonia- detection-challenge/overview
(2018)

2. Chen, Z., Pan, Y., Ye, Y., Cui, H., Xia, Y.: Treasure in distribution: A domain
randomization based multi-source domain generalization for 2d medical image seg-
mentation. In: Proc. of Intl. Conf. on Medical Image Computing and Computer
Assisted Intervention. pp. 89–99 (2023)

3. Fang, Y., Wu, J., Wang, Q., Qiu, S., Bozoki, A., Liu, M.: Source-free collaborative
domain adaptation via multi-perspective feature enrichment for functional MRI
analysis. Pattern Recognition 157, 110912 (2025)

4. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. Proc. of Advances in Neural
Information Processing Systems 27 (2014)

5. Hou, Q., Wang, Y., Cao, P., Cheng, S., Lan, L., Yang, J., Liu, X., Zaiane, O.R.:
A collaborative self-supervised domain adaptation for low-quality medical image
enhancement. IEEE Trans. on Medical Imaging (2024)

6. Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H.,
Haghgoo, B., Ball, R., Shpanskaya, K., et al.: Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison. In: Proc. of the AAAI
Conf. on Artificial Intelligence. vol. 33, pp. 590–597 (2019)

7. Johnson, A.E., Pollard, T.J., Greenbaum, N.R., Lungren, M.P., Deng, C.y., Peng,
Y., Lu, Z., Mark, R.G., Berkowitz, S.J., Horng, S.: Mimic-cxr-jpg, a large publicly
available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042
(2019)

8. Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C., Liang, H., Baxter, S.L.,
McKeown, A., Yang, G., Wu, X., Yan, F., et al.: Identifying medical diagnoses and
treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)

9. Li, X., Dai, Y., Ge, Y., Liu, J., Shan, Y., DUAN, L.: Uncertainty modeling for out-
of-distribution generalization. In: Proc. of International Conference on Learning
Representations (2022)



10 Z. Liu et al.

10. Nguyen, H.Q., Lam, K., Le, L.T., Pham, H.H., Tran, D.Q., Nguyen, D.B., Le,
D.D., Pham, C.M., Tong, H.T., Dinh, D.H., et al.: Vindr-cxr: An open dataset of
chest x-rays with radiologist’s annotations. Scientific Data 9(1), 429 (2022)

11. Nuriel, O., Benaim, S., Wolf, L.: Permuted adain: Reducing the bias towards global
statistics in image classification. In: Proc. of IEEE Intl. Conf. on Computer Vision
and Pattern Recognition. pp. 9482–9491 (2021)

12. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Proc. of Intl. Conf. on Medical Image Computing and
Computer Assisted Intervention. pp. 234–241 (2015)

13. Sanchez, K., Hinojosa, C., Arguello, H., Kouamé, D., Meyrignac, O., Basarab,
A.: Cx-dagan: Domain adaptation for pneumonia diagnosis on a small chest x-ray
dataset. IEEE Trans. on Medical Imaging 41(11), 3278–3288 (2022)

14. Shi, T., Boutry, N., Xu, Y., Géraud, T.: Local intensity order transformation for ro-
bust curvilinear object segmentation. IEEE Trans. on Image Processing 31, 2557–
2569 (2022)

15. Shin, H.C., Tenenholtz, N.A., Rogers, J.K.: Medical image synthesis for data aug-
mentation and anonymization using generative adversarial networks. In: SASHIMI
2018 (2018)

16. Sun, Z., Gu, Y., Liu, Y., Zhang, Z., Zhao, Z., Xu, Y.: Position-guided prompt
learning for anomaly detection in chest x-rays. In: Proc. of Intl. Conf. on Medical
Image Computing and Computer Assisted Intervention. pp. 567–577 (2024)

17. Tian, Y., Wen, C., Shi, M., Afzal, M.M., Huang, H., Khan, M.O., Luo, Y., Fang, Y.,
Wang, M.: Fairdomain: Achieving fairness in cross-domain medical image segmen-
tation and classification. In: Proc. of European Conference on Computer Vision.
pp. 251–271 (2024)

18. Tiu, E., Talius, E., Patel, P., Langlotz, C.P., Ng, A.Y., Rajpurkar, P.: Expert-level
detection of pathologies from unannotated chest x-ray images via self-supervised
learning. Nature Biomedical Engineering 6(12), 1399–1406 (2022)

19. Wang, H., Chen, J., Zhang, S., He, Y., Xu, J., Wu, M., He, J., Liao, W., Luo, X.:
Dual-reference source-free active domain adaptation for nasopharyngeal carcinoma
tumor segmentation across multiple hospitals. IEEE Trans. on Medical Imaging
(2024)

20. Wang, H., Xia, Y.: Domain-ensemble learning with cross-domain mixup for thoracic
disease classification in unseen domains. Biomedical Signal Processing and Control
81, 104488 (2023)

21. Wang, X., Li, Y., Wu, W., Jin, J., Rong, Y., Jiang, B., Li, C., Tang, J.: Pre-training
on high-resolution x-ray images: an experimental study. Visual Intelligence 3(1),
1–15 (2025)

22. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8:
Hospital-scale chest x-ray database and benchmarks on weakly-supervised classi-
fication and localization of common thorax diseases. In: Proc. of IEEE Intl. Conf.
on Computer Vision and Pattern Recognition. pp. 2097–2106 (2017)

23. Yan, S., Yu, Z., Liu, C., Ju, L., Mahapatra, D., Betz-Stablein, B., Mar, V., Janda,
M., Soyer, P., Ge, Z.: Prompt-driven latent domain generalization for medical image
classification. IEEE Trans. on Medical Imaging (2024)

24. Zhang, Y., Li, M., Li, R., Jia, K., Zhang, L.: Exact feature distribution matching
for arbitrary style transfer and domain generalization. In: Proc. of IEEE Intl. Conf.
on Computer Vision and Pattern Recognition. pp. 8035–8045 (2022)

25. Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for un-
supervised domain adaptation: Application to x-ray image segmentation. In: Proc.



NCBT for Domain-Invariant Chest X-ray Diagnosis 11

of Intl. Conf. on Medical Image Computing and Computer Assisted Intervention.
pp. 599–607 (2018)

26. Zhang, Z., Sun, Z., Liu, Z., Zhao, Z., Yu, R., Du, B., Xu, Y.: Spatial-aware attention
generative adversarial network for semi-supervised anomaly detection in medical
image. In: Proc. of Intl. Conf. on Medical Image Computing and Computer Assisted
Intervention. pp. 638–648 (2024)

27. Zhao, H., Dong, W., Yu, R., Zhao, Z., Du, B., Xu, Y.: Morestyle: relax low-
frequency constraint of fourier-based image reconstruction in generalizable medi-
cal image segmentation. In: Proc. of Intl. Conf. on Medical Image Computing and
Computer Assisted Intervention. pp. 434–444 (2024)

28. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. In:
Proc. of International Conference on Learning Representations (2021)

29. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Mixstyle neural networks for domain
generalization and adaptation. International Journal of Computer Vision 132(3),
822–836 (2024)

30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proc. of IEEE Intl. Conf. on Com-
puter Vision. pp. 2223–2232 (2017)

31. Zunaed, M., Haque, M.A., Hasan, T.: Learning to generalize towards unseen do-
mains via a content-aware style invariant model for disease detection from chest
x-rays. IEEE Journal of Biomedical and Health Informatics (2024)


	Neighborhood-Consistent Binary Transformation for Domain-Invariant Chest X-ray Diagnosis

