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Abstract. Current medical report generation (MRG) methods remain
limited by cross-modal associations, particularly when handling complex
medical terminology across different modalities. In this work, we pro-
pose the Universal Medical Report Generation (UniMRG) framework to
enhance Vision-Language foundation models (VLFMs) through coordi-
nated data augmentation and architecture optimization. Specifically, we
introduce Universal Semantics-Synergistic Multimodal Augmentation to
enhance model adaptability to diverse medical scenarios while preserving
critical diagnostic features. We further design a Medical Content Learner
to capture both fine-grained pathological variations and specialized diag-
nostic contexts for robust cross-modal alignment. To achieve robust med-
ical understanding against real-world variations, we develop a Dynamic
Synergistic Evolution strategy guided by Large Language Model (LLM)
that enables joint optimization of augmentation policies and architec-
tural configurations. To address the existing gap in public VL datasets
for skin diseases, we release a large-scale Skin-Path dataset, consisting of
277,761 patches covering 10 distinct skin diseases. Extensive experiments
on PatchGastric22, IU-Xray, and Skin-Path demonstrate that UniMRG
achieves state-of-the-art performance, surpassing Clinical-BERT by 2.6%
in BLEU-4 and 3.9% in Rouge-L on IU-Xray. The Skin-Path dataset is
available at: https://unimrg.github.io/Skin-Path/.

Keywords: Medical Report Generation - Cross-Modal Alignment - Large
Language Models (LLMs).

1 Introduction

Medical report generation (MRG) is a key component supporting medical im-
age computing and computer-aided diagnosis. It aims to generate accurate and
coherent text from medical images such as X-rays [10], surgical images [I1],
and pathology slides [24], thereby assisting clinicians in diagnosis and improving
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Fig. 1: Details of the proposed UniMRG method for medical report generation.

efficiency. Traditional methods [8126]29] often exhibit limited generative capa-
bilities, struggling to produce coherent long-form text. Although Transformer-
based models [I/I8] have improved long-range dependency modeling, they still
face challenges in effectively aligning visual and textual information, particularly
when handling complex medical images and specialized medical terminology [13].

Recent advances in Vision-Language Foundation Models (VLFMs) have en-
abled coherent, context-aware text generation [I4J23J30]. While some works ap-
ply VLFMs to MRG [9/33], they struggle to maintain semantic consistency across
modalities under medical scenario variations. Dependence on fixed augmenta-
tions [31I32l4] and static architectures [27UI7ITI6] further limits adaptability. Key
challenges include: i) achieving accurate cross-modal alignment, especially in
associating complex medical terminology with visual features; and i) designing
robust modules that fully leverage VLFMs for cross-modal learning.

In this work, we propose the UniMRG framework, which incorporates the
Universal Semantics-Synergistic Multimodal Augmentation (UMA) and the Med-
ical Content Learner (MCL) modules to enhance VLFMs’ understanding of med-
ical imaging scenarios across diverse MRG tasks through data augmentation
and architecture optimization. Furthermore, we design the Dynamic Synergistic
Evolution strategy to jointly optimize augmentation policies and architectural
configurations. The main contributions are as follows:

— We proposed the UniMRG framework from both data and structural per-
spectives, significantly enhancing the general VLFM for MRG tasks.

— We designed a Dynamic Synergistic Evolution method to explore the optimal
model architecture and multi-modal augmentation strategy for MRG model.

— We introduced Skin-Path, which, to our best knowledge, is the first VL
dataset for skin cancer, facilitating comprehensive evaluation of MRG tasks.

— Experiments on PatchGastric22, IU-Xray, and Skin-Path confirm UniMRG’s
effectiveness across medical domains (e.g., pathology and chest X-rays).
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Fig.2: The Medical Content Learner architecture for capturing variations and
associations between augmented visual semantics and medical terminology.

Algorithm 1: LLM-Orchestrated Dynamic Synergistic Evolution

Input : LLM proxy P, unified search space S, training dataset Dy,,
validation dataset Dya1, LLM search times Npax, training epochs 7T'.

Initialize Aqug and MCL configurations, evaluation metrics Perf = {}.
for N=0 to Nmar do

// Stage 1: Universal Semantics-Synergistic Multimodal Augmentation
Generate optimal multimodal features (fI, f7) via P using Eq.

// Stage 2: MCL Architecture Adaptation

Update MCL architecture and extract cross-modal features using Eq. [g]
// Stage 3: Joint Training and Evaluation

Train UniMRG for T epochs and evaluate to get Per fya using Eq. [ [f]
// Stage 4: LLM-guided Synergistic Evolution

Update augmentation and architecture configurations using Eq. m
end

Output: Optimal augmentation strategy Az,, and MCL architecture a™.

2 Methodology

This section presents the UniMRG framework (Fig. [T)), which includes: (a) Uni-
versal Semantics-Synergistic Multimodal Augmentation (Sec to simulate
real-world medical variations while preserving diagnostic features; and (b) Dy-
namic Synergistic Evolution (Sec 7 where an LLM proxy coordinates aug-
mentation and architecture adaptation to enhance understanding of specialized
medical terminology. We also introduce Skin-Path (Sec , the first VL dataset
for skin cancer, supporting comprehensive MRG evaluation.

2.1 Universal Semantics-Synergistic Multimodal Augmentation

To enhance MRG capability using cross-modal medical data, we propose Uni-
versal Semantics-Synergistic Multimodal Augmentation (UMA), which aims to
simulate diverse real-world medical variations while preserving key diagnostic
features. UMA applies two strategies: Sy for images and Sy for text.

Let Sy and St represent image and text augmentation strategies (e.g., Ran-
domResizedCrop, ColorJitter for images; Synonym Replacement, Back-Translation
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for text). A task-aware LLM proxy P, guided by prompts (e.g., diagnostic fo-
cus), generates and refines augmentation pairs using validation feedback. Visual
context is integrated via MCL-processed features. This process is defined as:

L [T = E(P(S1,8r),d}), Er(P(S;,87),d}), (1)

where d!, dT represent the original medical image and report text, P denotes
the LLM-guided proxy over both modalities, and F; and Ep are image and
text encoders, respectively, in the VLFM. The extracted features !, ' aim to
reflect real-world variations while preserving medical patterns, serving as the
data foundation for robust cross-modal alignment in MRG tasks.

2.2 Dynamic Synergistic Evolution via LLM Proxy

Medical Content Learner (MCL). General VLFMs commonly lack the abil-
ity to associate and align medical terminology with visual semantics. To address
this, we design a multi-level cross-modal content learner, comprising the FD
(Fine-grained Details)-Learner and GC (Global Contexts)-Learner, as illustrated
in Figure 2] While Figure [2| presents the high-level structure, the FD-Learner is
followed by an external MHA and skip connection module that further refines
the visual features. The interaction modeling process is formulated as:

fi = FD-Learner(f, f1) + LN(MHA(f2)) + f, (2)

fit1 = GC-Learner(CA(f7)) + FEN(LN(CA(f1))) + CA(f}). (3)

where f2 and f! are modality features from the i-th cross-modal interaction layer;
fci and f“‘lc are refined features capturing fine-grained pathology and diagnos-
tic context. FD-Learner boosts sensitivity to visual-textual details; GC-Learner
models global semantics via LoRA-based adaptation [6]. LN (LayerNorm) stabi-
lizes the activations, MHA (Multi-Head Attention) captures intra-modal depen-
dencies, and CA (cross-attention) aligns cross-modal features. Following [20], we
use bidirectional contrastive losses (L£i2t, Lio;) for better alignment.

Dynamic Synergistic Evolution (DSE). In practical implementation,
MRG models still face two key challenges: 4) maintaining semantic consistency
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Table 1: Comparative results on PatchGastric22 [24] and IU-Xray [2].

Dataset Model BL-1 BL-2 BL-3 BL-4 MTR RG-L C
EfficientNetB3 [22]| - - - 0324 - - -

VGG [2]] 0.503 0.382 0.343 0.248 - - -

ResNet [5] 0.503 0.382 0.343 0.248 - - -

PatchGastric22 PVT 28] 0.503 0.382 0.343 0.248 - - -
SWIN [16] 0.498 0.373 0.328 0.231 - - -

ConvNeXt [I7] [0.510 0.392 0.351 0.255 - - -
UniMRG (Ours) |0.541 0.465 0.408 0.368 0.306 0.529 2.670
ST [26] 0.216 0.124 0.087 0.066 - 0.306 0.277
CoAtt [8] 0.455 0.288 0.205 0.154 - 0.369 0.277
MRMA [29] 0.457 0.295 0.212 0.157 0.180 0.353 0.244
HRGR [10] 0.438 0.298 0.208 0.151 - 0.322 0.343
CMAS-RL [7] |0.464 0.301 0.210 0.154 - 0.362 0.275
R2Gen [T] 0.470 0.304 0.219 0.165 0.187 0.371 -
PPKED [I5] 0.483 0.315 0.224 0.168 - 0.376 0.351
CMN-+MHAA [27]| 0.503 0.328 0.232 0.172 0.212 0.395 -
S3-NET [18] 0.499 0.334 0.246 0.172 0.206 0.401 -
SILC [13] 0.472 0.321 0.234 0.175 0.192 0.379 0.368
UniMRG (Ours) |0.509 0.336 0.252 0.196 0.228 0.415 0.402

TU-Xray

between modalities after augmentation, and i) adapting the MCL architecture
to data distribution shifts. To address these, we introduce DSE, which uses
an LLM as a task-aware controller to jointly optimize the UMA policy Aaug
and MCL configuration a (e.g., module depth, attention heads) within a unified
search space Sa.. This enables efficient data-model co-optimization with minimal
cost, formulated as a neural architecture search (NAS) task:

W*(a) = arg my%}nIE [Lir(a, W; Agug, Dir)] s (4)

(a*, Asy) = argmax  Per fual (Dyat, Aaug; @, W*, Sa) - (5)
a€Sq, Aaug€Sa
Here, W* represents the weights of the optimal architecture a*. E is the math-
ematical expectation function. £, is the training loss, Per f,,1 is the validation
performance, Dy, and D, refer to the training and validation sets, respectively.
To optimize this process efficiently, we leverage LLM as an intelligent proxy
P to guide the search process, enabling synergistic evolution of A,,4 and a:

(ai+17 Aaug,iJrl) = P(Saa Dvah 5(2)7 P@vaal(é(i)), 50)7 s.t. 5((1) S ﬁO- (6)

Here, a;41 is the (i+1)-th iteration result, 5(a) denotes the architecture budget
relative to By, and Jy represents all architecture and augmentation configura-
tions. After each iteration, 6 and Per fy, () are updated:

P@vaal(é(i + 1)7 Dval) — P@Tf(&(i), Dval) + Perf(ai—i-l) Aaug,i—i—lv Dval)- (7)
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Fig.4: Generated reports from (a) PatchGastric22, (b) Skin-Path, and (c) IU-
Xray datasets, with abnormalities and correctly identified findings highlighted.

Consequently, the final result is selected from §; generated with Eq. [G}

(a*,AZug) = argmax Per fyai(a, Agug | Dvai),
(a,Aqug)€D (8)

s.t. w*(a, Aqug) = arg min Ly, (w, a, Aqug; Dir).
w

The proposed Dynamic Synergistic Evolution is outlined in Algorithm

2.3 Skin-Path: The First VL Dataset for Skin Cancer

In the current medical field, Vision-Language (VL) datasets for skin cancer re-
main scarce. To fill the gap, we introduce Skin-Path, the first VL dataset for skin
cancer, comprising 194 H&E-stained whole slide images (WSIs) from distinct
patients at Southern Sun Pathology laboratory (x20 magnification) with diag-
nostic reports by a senior dermatopathologist. From these WSIs, we extracted
277,761 patches of size 300x300 pixel for MRG evaluation. Fig. a) shows sam-
ple patches with their corresponding medical report. The dataset covers 10 com-
mon skin diseases, including seborrhoeic keratosis, basal cell carcinoma, and
squamous cell carcinoma, enabling effective evaluation for automated skin can-
cer diagnosis. A word cloud in Fig. b) illustrates the dataset’s diversity.

3 Experiments

We evaluated UniMRG on three benchmarks: PatchGastric22 (262,777 patches
from 991 WSIs) [24], Skin-Path, and IU-Xray (7,470 chest X-rays with 3,955
reports) [2]. Metrics included BLEU [19], METEOR (MTR) [3], ROUGE-L (RG-
L) [12], and CIDEr (C) [25], using BLIP2 [9] as both VLFM and base model.
Implementation Details. Experiments used two NVIDIA RTX A6000
GPUs with ViT-L/14 (CLIP) [20] as image encoder and FlanT5 [09] as the lan-
guage model. Training used a batch size of 16 and Adam optimizer (initial LR:
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Table 2: Comparison results with pretrained models on the IU-Xray [2] dataset.

Model Pretrain BL-1 BL-2 BL-3 BL-4 MTR RG-L
XrayGPT [23] |MIMIC+CheXpert|0.177 0.104 0.047 0.007 0.105 0.203
MiniGPT-4 [33] MIMIC 0.389 0.262 0.181 0.134 0.169 0.308
Liu et al. [I4] MIMIC 0.499 0.323 0.238 0.184 0.208 0.390

Clinical-BERT [30] MIMIC 0.495 0.330 0.231 0.170 - 0.376
UniMRG (Ours) - 0.503 0.336 0.252 0.196 0.228 0.415

Table 3: Ablations on PatchGastric22, Skin-Path, and IU-Xray datasets.

Dataset Model BL-1 BL-2 BL-3 BL-4 MTR RG-L C A
Base 0.460 0.382 0.325 0.285 0.256 0.449 1.850 -
PatchGastric22 +UMA 0.478 0.403 0.349 0.311 0.265 0.465 2.284 8.1%
+MCL 0.504 0.426 0.367 0.324 0.283 0.498 2.289 13.3%
UniMRG (Ours)|0.541 0.465 0.408 0.368 0.306 0.529 2.670 25.1%
Base 0.430 0.316 0.204 0.194 0.203 0.411 0.387 -
Skin-Path +UMA 0.444 0.331 0.220 0.210 0.219 0.452 0.408 6.8%
+MCL 0.456 0.351 0.245 0.233 0.232 0.476 0.419 13.7%
UniMRG (Ours)|0.478 0.384 0.268 0.256 0.246 0.533 0.438 22.9%
Base 0.462 0.299 0.202 0.150 0.172 0.341 0.329 -
TU-Xray +UMA 0.471 0.305 0.217 0.162 0.184 0.362 0.344 5.3%
+MCL 0.478 0.316 0.228 0.171 0.199 0.387 0.355 10.4%
UniMRG (Ours)|0.503 0.336 0.252 0.196 0.228 0.415 0.402 21.9%

5e-5, exponential decay). Dataset and evaluation followed [24430] for consistency.
For DSE, the architecture search space includes FD/GC-Learner layers [1, 3],
attention heads {2, 4, 8}, and hidden dimensions {128, 256, 512}.

3.1 Comparison with state-of-the-art methods

Table[I] compares UniMRG with state-of-the-art methods on the PatchGastric22
and IU-Xray datasets. UniMRG outperforms existing methods on nearly all met-
rics. Table [2| compares UniMRG with recent VLFM-based methods on [U-Xray,
where it outperformed Clinical-BERT by 2.6% on BLEU-4 and 3.9% on ROUGE-
L, demonstrating its ability to learn medically relevant features directly from the
data without external knowledge or specialized training.

3.2 Ablation Studies

Effect of Dynamic Synergistic Evolution. Fig. [5| shows search results on
PatchGastric22 and IU-Xray. Dashed lines mark baseline B4, MTR, and RL
scores. Our method surpassed the baselines by iteration 3 on PatchGastric22 and
iteration 6 on IU-Xray. Over 10 iterations, the best candidates were selected.
Impact of Different Components. We conducted ablations (Table ,
with full model achieving Avg. A gains of 25.1%, 22.9%, and 21.9%. Table[d]shows
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Table 4: Impact of different data augmentation (DA) methods on benchmarks.
Dataset DA |BL-1 BL-2 BL-3 BL-4 MTR RG-L. C
Mixup | 0.507 0.429 0.376 0.328 0.286 0.501 2.224
Cutout|0.512 0.436 0.380 0.330 0.288 0.492 2.309
PatchGastric22|Cutmix| 0.516 0.438 0.394 0.342 0.290 0.508 2.394
MCDA|0.524 0.453 0.395 0.354 0.293 0.515 2.554
UMA [0.541 0.465 0.408 0.368 0.306 0.529 2.670
Mixup | 0.462 0.365 0.252 0.242 0.238 0.489 0.426
Cutout | 0.458 0.359 0.248 0.237 0.233 0.476 0.422
Skin-Path  |Cutmix|0.465 0.368 0.255 0.248 0.240 0.509 0.428
MCDA|0.469 0.372 0.259 0.250 0.242 0.516 0.431
UMA [0.478 0.384 0.268 0.256 0.246 0.533 0.438
Mixup | 0.489 0.320 0.237 0.176 0.204 0.396 0.376
Cutout|0.482 0.318 0.230 0.172 0.199 0.390 0.369
TU-Xray Cutmix|0.491 0.325 0.244 0.181 0.210 0.402 0.388
MCDA|0.495 0.328 0.247 0.186 0.215 0.407 0.393
UMA [0.503 0.336 0.252 0.196 0.228 0.415 0.402
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Fig. 5: Searching results for (a) PatchGastric22 and (b) IU-Xray datasets.

UMA outperforms Mixup [32], Cutout [4], Cutmix [31], and Manually Configured
Data Augmentation (MCDA, fixed strategies without LLM guidance).

Impact of Module Integration on Model Size. We compare the number
of parameters between the base model and our approach. Our method adds 2.95
million trainable parameters, a modest 2.86% increase over the base model.

Qualitative Analysis. Fig. [ compares UniMRG-generated reports with
the base model across three datasets. UniMRG more accurately captures disease
details, producing reports that closely align with the ground truth.

4 Conclusion

In this work, we proposed UniMRG to address key MRG challenges by enhancing
medical content perception and cross-modal integration via UMA and MCL. An
LLM-guided evolution strategy jointly optimizes architecture and augmentation.
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We also introduce the Skin-Path dataset covering 10 skin diseases. Experiments
on PatchGastric22, IU-Xray, and Skin-Path confirm UniMRG’s effectiveness.

5 Compliance with ethical standards

This study was performed in line with the principles of the Declaration of
Helsinki. Ethics approval was granted CSIRO Health and Medical Human Re-
search Ethics Committee (CHMHREC), under approval number 2021 030 LR,
valid from 7 April 2021 to 7 April 2025. All experiments were conducted within
the approval period, with no further data processing thereafter.
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