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Abstract. Cancer diagnosis has greatly benefited from the integration
of whole-slide images (WSIs) with multiple instance learning (MIL), en-
abling high-resolution analysis of tissue morphology. Graph-based MIL
(GNN-MIL) approaches have emerged as powerful solutions for capturing
contextual information in WSIs, thereby improving diagnostic accuracy.
However, WSIs require significant computational and infrastructural re-
sources, limiting accessibility in resource-constrained settings. Conven-
tional light microscopes offer a cost-effective alternative, but applying
GNN-MIL to such data is challenging due to extensive redundant images
and missing spatial coordinates, which hinder contextual learning. To ad-
dress these issues, we introduce MicroMIL, the first weakly-supervised
MIL framework specifically designed for images acquired from conven-
tional light microscopes. MicroMIL leverages a representative image ex-
tractor (RIE) that employs deep cluster embedding (DCE) and hard
Gumbel-Softmax to dynamically reduce redundancy and select repre-
sentative images. These images serve as graph nodes, with edges com-
puted via cosine similarity, eliminating the need for spatial coordinates
while preserving contextual information. Extensive experiments on a
real-world colon cancer dataset and the BreakHis dataset demonstrate
that MicroMIL achieves state-of-the-art performance, improving both di-
agnostic accuracy and robustness to redundancy. The code is available
at https://github.com/kimjongwoo-cell/MicroMIL

Keywords: Digital Pathology · Conventional Light Microscopes · Mi-
croscopy Images · Multiple Instance Learning

1 Introduction

Cancer remains a leading global cause of mortality, necessitating advancements
in diagnostic technologies to enhance early detection and improve survival rates.
* Co-first authors with equal contribution.
† Corresponding author.
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Whole-slide imaging (WSI) has emerged as a transformative tool in digital
pathology, offering high-resolution insights into tissue morphology and disease-
related anomalies [6, 13]. However, WSIs require substantial infrastructure due
to their high acquisition costs, memory demands, and lengthy processing times,
making them less practical in resource-limited settings [23, 2].
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Fig. 1. Left: Valid patches from WSI (scanner) are acquired using a sliding-window
approach and have absolute positions. Right: Light microscopy images lack known
positions and contain many redundancies due to subjective capture by pathologists.
Middle: Ratio of image pairs exceeding the redundancy threshold (0.995).

While WSI scanners are becoming more accessible, light microscopes remain
far more widely used, especially in low-resource settings. Microscopy images
thus offer a practical and cost-effective alternative for enabling AI-driven di-
agnostic solutions in diverse healthcare contexts [21]. Low-cost optical micro-
scopes tailored for low- and middle-income countries continue to be developed
and microscopy-based diagnostics remain the clinical standard [19, 26].

Despite these advantages, as illustrated in Figure 1, light microscopy images
pose unique challenges, including the absence of absolute spatial coordi-
nates due to manual acquisition by pathologists and significant redundancy
caused by multiple image captures. To highlight these issues, we compare mi-
croscopic and WSI datasets (TCGA NSCLC4 and Camelyon16 [3]) and show
that light microscopy images exhibit significantly higher redundancy, with the
highest observed in real-world microscopic datasets.

Recent advancements in weakly-supervised multiple instance learning (MIL)
have facilitated the use of WSIs for cancer diagnosis by requiring only slide-
level labels, thereby reducing the need for exhaustive annotations [7]. Within
this paradigm, graph-based MIL (GNN-MIL) models [5, 4] have shown promise
by leveraging spatial relationships among patches to capture contextual infor-
mation, representing patches as nodes and their interactions as edges. However,
these methods are inherently designed for WSIs and cannot be directly applied
to light microscopy images, where spatial coordinates are unknown and image
4 https://www.cancer.gov/tcga
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redundancy is prevalent. Overcoming these limitations requires a specific ap-
proach that accommodates the unique characteristics of light microscopy images
while preserving the benefits of graph-based contextual modeling.

To address the challenges of absent spatial coordinates and high redundancy,
we propose MicroMIL, the first weakly-supervised MIL framework specifically
designed for conventional light microscopy images. MicroMIL introduces a rep-
resentative image extractor (RIE) that leverages deep cluster embedding (DCE)
[11] to dynamically group redundant images and hard Gumbel-Softmax [14] to
select a representative image per cluster. These selected images serve as graph
nodes, with edges formed using cosine similarity to capture contextual informa-
tion among instances. While prior approaches have relied on statistical heuristics
or ensemble-based methods [20, 8], the most related method [15] does not address
critical challenges specific to light microscopy images. MicroMIL is explicitly de-
signed to overcome these limitations through a graph-based formulation that
operates without relying on spatial metadata.

By enabling end-to-end representative feature selection, MicroMIL jointly
optimizes clustering and instance selection within a unified framework, ensur-
ing that the most informative representations contribute to the final prediction.
To achieve this, we propose an online redundancy-aware learning strategy that
dynamically refines instance selection while maintaining feature diversity. The
graph-based representation further enhances structural preservation by connect-
ing similar nodes, mitigating the loss of spatial information. Extensive experi-
ments on a real-world colon cancer dataset and the BreakHis dataset validate
MicroMIL’s effectiveness, demonstrating significant gains in diagnostic accuracy
and redundancy robustness compared to state-of-the-art MIL methods.

2 Methodology

Each patient is treated as a bag, and the corresponding light-microscope im-
ages as instances, following the MIL paradigm. The goal is to predict patient
diagnosis in a weakly-supervised setting without instance-level labels. We pro-
pose MicroMIL, a MIL framework for microscopic image analysis (see Figure
2). The framework consists of three components: (1) a frozen pre-trained fea-
ture extractor for generating image features, (2) a RIE that reduces redundancy
by clustering similar images using DCE and selecting representatives via hard
Gumbel-Softmax, and (3) a graph-based aggregation module, where nodes rep-
resent the selected represented images and edges are constructed using an upper
triangular cosine similarity matrix to link similar nodes. Finally, a GNN captures
contextual information for analysis.

2.1 Representative Image Extractor

In the embedding-based MIL framework, a frozen pre-trained feature extractor
E maps each microscopic image Is to a d-dimensional feature vector fs = E(Is),
forming the feature set F = {f1, f2, . . . , fS}, where S varies across patients. To
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Fig. 2. Proposed end-to-end MicroMIL framework.

group redundant images, we employ deep cluster embedding (DCE) [25], which
iteratively assigns data points to clusters and refines cluster centers to minimize
intra-cluster distances. Let µc ∈ Rd be the centroid of the c-th cluster, where
c = 1, . . . , C. The soft assignment probability zs,c, indicating the likelihood of
fs belonging to the c-th cluster, is defined as:

zs,c =

(
1 + ∥fs − µc∥2

)−1∑C
j=1 (1 + ∥fs − µj∥2)−1

, Z ∈ RS×C (1)

The DCE algorithm alternates between updating the centroids µc and refin-
ing cluster assignments Z until convergence.

To select the most representative feature from each cluster, we use the hard
Gumbel-Softmax function [14], which allows for end-to-end differentiability. Given
logits Xx and Gumbel noise gx ∼ Gumbel(0, 1), the hard Gumbel-Softmax func-
tion is defined as:

HardGumbel(X) = one_hot
(
argmax

x
(Xx + gx)

)
(2)

Applying this function to feature-cluster interactions, the hard cluster as-
signments Z̃ are determined as:

z̃s,c = HardGumbel(ss,c), Z̃ ∈ RS×C (3)

where ss,c = w⊤(fs ⊙ z:,c), with w ∈ Rd being a learnable weight vector and
⊙ denoting element-wise multiplication.



MicroMIL 5

The representative feature qc of cluster c is computed as follows:

qc =

S∑
s=1

z̃s,cfs, Q ∈ RC×d (4)

This process combines DCE for clustering and the hard Gumbel-Softmax for se-
lecting representative features, ensuring inter-cluster separation and intra-cluster
compactness. By focusing on representative features, this approach improves
subsequent classification performance while reducing redundancy.

2.2 Graph-based Aggregate Module

To model relationships among clusters, we construct a graph G, where nodes
represent representative feature clusters and edges capture pairwise similarities.
Given representative cluster embeddings Q = {q1, q2, . . . , qC}, where qc ∈ Rd,
the pairwise similarity is computed using cosine similarity as Sij =

q⊤i qj
∥qi∥∥qj∥ ,

with ∥qi∥ denoting the Euclidean norm of qi. A value of Sij closer to 1 indicates
higher similarity between clusters.

To retain only the most important relationships, we apply the same hard
Gumbel-Softmax function to the similarity matrix:

m̃i,j = HardGumbel(Sij), M̃ ∈ RC×C (5)

The resulting graph G = (V,E) is defined by nodes V = {1, 2, . . . , C} and
edges E = {(i, j) | m̃i,j > 0}.

Once the graph is constructed, a GNN propagates and refines the cluster
embeddings. The initial node features are H(0) = R and through L GNN lay-
ers, node embeddings are updated by aggregating information from neighboring
nodes. The entire process is represented as:

y = σ (Wclass · mean (GNN(G,R))) (6)

where GNN(G,R) represents the L-layer operations on G, Wclass is the classi-
fication weight matrix, mean(·) aggregates node embeddings, and σ is the activa-
tion function. The entire framework, including DCE, RIE, and GNN, is trained
end-to-end using binary cross-entropy (BCE) loss.

3 Experiments and Results

3.1 Datasets

BreakHis BreakHis [24] is a widely used benchmark dataset for microscopy
image analysis and cancer research. It comprises 7,909 images from 81 patients,
with an average of 96.4 images per patient. Among these, 2,480 images (from
24 patients) are labeled as normal, while 5,429 images (from 57 patients) are
labeled as malignant. The dataset spans multiple magnifications (40×, 100×,
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200×, and 400×) and is collected under controlled conditions, which may limit
its applicability to real-world scenarios.

Real-world (Seegene) Dataset Our real-world dataset, collected from the
Seegene Medical Foundation, consists of 135,100 images from 899 patients, aver-
aging 150.3 images per patient. The dataset was approved by both the founda-
tion’s IRB (SMF-IRB-2020-007) and the KAIST IRB (KAIST-IRB-23-214). It
includes 52,339 images (from 493 patients) labeled as normal and 82,761 images
(from 406 patients) labeled as malignant, primarily at 100× and 200× magnifi-
cations, aligning with common clinical practices.

3.2 Implementation Details

For a fair comparison, we use ResNet18 pre-trained on ImageNet as the feature
extractor for all models, with a hidden dimension of 128 for consistency. Mi-
croMIL is tuned with a dropout rate of 0.5, a learning rate of 1 × 10−3, and
the Adam optimizer. For the final results, we use 36 clusters for the real-world
(Seegene) dataset and 16 for BreakHis, given its smaller image count per pa-
tient. We experiment with 16 (42), 25 (52), and 36 (62) clusters and report the
best-performing configuration. Performance differences across these settings are
minimal and MicroMIL consistently outperforms all baselines. While online clus-
tering (DCE) requires a predefined cluster count, we aim to explore automatic
cluster number selection in future work. All models, implemented in PyTorch,
are trained with two graph layers on an NVIDIA GeForce RTX 3080 GPU.

3.3 Baselines Comparison

Table 1. Performance metrics of baselines and MicroMIL on Real-world (Seegene) and
BreakHis datasets. Best results are in bold and second-best results are underlined.

Real-world (Seegene) BreakHis
Model ACC AUC F1 ACC AUC F1
ABMIL [ICML‘18] [12] 0.9444 0.9764 0.9433 0.8929 0.8947 0.8805
MS-DA-MIL [CVPR‘20] [10] 0.9556 0.9829 0.9514 0.8929 0.9591 0.9268
DSMIL [CVPR‘21] [16] 0.9444 0.9829 0.9440 0.8214 0.8947 0.8155
CLAM [Nat BioMed‘21] [18] 0.9556 0.9873 0.9552 0.9286 0.9298 0.9181
TransMIL [NeurIPS‘21] [22] 0.9778 0.9873 0.9776 0.8929 0.9825 0.9268
DTFD-MIL [CVPR‘22] [27] 0.9611 0.9901 0.9607 0.9286 0.9766 0.9222
IBMIL [CVPR‘23] [17] 0.9611 0.9894 0.9606 0.9286 0.9532 0.9181
ACMIL [ECCV‘24] [28] 0.9611 0.9893 0.9606 0.8929 0.9474 0.8857
MicroMIL 0.9922 0.9994 0.9925 0.9643 0.9942 0.9730

Table 1 shows that MicroMIL consistently surpasses baseline MIL models
across all evaluated metrics on both real-world and public datasets. This per-
formance advantage stems from the MicroMIL’s specific design to address two
key challenges of light microscopy datasets: image redundancy and no abso-
lute position. In contrast, existing MIL models are designed for WSIs obtained
from scanners, thereby without the need to account for these characteristics. By
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effectively tackling the unique characteristics present, MicroMIL proves to be
exceptionally well-suited for patient diagnosis using light microscopy images.

3.4 Impact of Representative Image Extractor
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Fig. 3. Similarity-based edge formation
probabilities (≥ 0.8) heatmaps for real-
world (Seegene) data, comparing cases
without (Left) and with (Right) the RIE.
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Fig. 4. Performance metrics without (w/o)
and with (w/) the RIE on Real-world (See-
gene) and BreakHis datasets.

In histopathology, patient-level prediction requires information exchange across
diverse tissue regions [1, 9], but redundant images hinder this process. To address
this, we propose the Representative Image Extractor (RIE), which selects repre-
sentative images from visually similar clusters to enhance diversity and improve
predictive performance. Figure 3 (without RIE) shows that redundancy limits
diverse interactions and leads to performance degradation (Figure 4), which RIE
successfully mitigates by filtering redundant instances. The effect varies depend-
ing on dataset redundancy, with smaller improvement in BreakHis due to lower
redundancy, whereas the real-world dataset shows a larger improvement, demon-
strating RIE’s effectiveness in handling highly redundant data.

3.5 Connecting Relative Neighborhood Nodes Method

Light microscopy images lack spatial information, necessitating effective edge
construction. We utilize a GNN-based method that connects nodes to their most
similar neighbors. As shown in Figure 5, performance drops without connections
due to a lack of contextual relationships. Random connections lead to weak
interactions, while cosine similarity-based edges, linking highly similar nodes,
capture meaningful relationships and outperform random or reverse-similarity
(1/similarity) edges. This highlights the importance of leveraging similarity to
enhance context integration and predictive performance.

3.6 Ablation Studies

Representative Image Extractor Methods. To enhance feature learning,
we adopt an online approach using DCE and Gumbel-Softmax for selecting in-
fluential representative images. As shown in Figure 6, a comparison of clustering
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methods (KMeans, DCE) and selection strategies (Random, Mean, Centroid,
Gumbel-Softmax) reveals that offline KMeans underperforms, while online DCE
+ Gumbel-Softmax achieves superior results. Notably, Gumbel-Softmax outper-
forms Mean and Centroid by better highlighting key images, demonstrating the
effectiveness of online clustering and selection in optimizing feature learning.
This online approach enables dynamic adaptation, ensuring robust feature rep-
resentations and reducing the risk of suboptimal cluster assignments.

Table 2. Robustness to redundancy in baseline models and MicroMIL. Arrows indicate
data flow direction (train → test). We count images exceeding the 0.995 redundancy
threshold (Figure 1, middle) per patient, then select the top 10% (T10) and bottom
10% (B10) of patients. Best results are in bold.

(1) T10 → B10 (2) B10 → T10 (3) T10 → T10
Model ACC AUC F1 ACC AUC F1 ACC AUC F1
ABMIL 0.8090 0.8592 0.7966 0.9213 0.9592 0.9210 0.9091 0.9229 0.9089
MS-DA-MIL 0.9101 0.9526 0.9248 0.9213 0.9642 0.9248 0.9091 0.9348 0.9209
DSMIL 0.9101 0.9474 0.9092 0.9326 0.9755 0.9319 0.9091 0.9438 0.9089
CLAM 0.9326 0.9796 0.9315 0.9213 0.9770 0.9194 0.9318 0.9521 0.9318
TransMIL 0.9213 0.9776 0.9212 0.8989 0.8526 0.8963 0.9318 0.8854 0.9309
DTFD-MIL 0.9438 0.9658 0.9428 0.9213 0.9750 0.9203 0.9318 0.9583 0.9318
IBMIL 0.9326 0.9709 0.9319 0.9326 0.9719 0.9319 0.9318 0.9458 0.9315
ACMIL 0.9434 0.9704 0.9431 0.9213 0.9689 0.9210 0.9318 0.9521 0.9315
MicroMIL 0.9663 0.9842 0.9630 0.9551 0.9801 0.9542 0.9545 0.9958 0.9524

Robustness on Image Redundancy Shift. To evaluate MicroMIL’s ro-
bustness to image redundancy, we set a similarity threshold of 0.995 to iden-
tify redundant image pairs. Table 2 shows that baseline MIL methods degrade
under extreme redundancy settings (B10→T10, T10→T10), while MicroMIL
consistently maintains high performance. Even in low-redundancy simulations
(T10→B10), MicroMIL outperforms all baselines. These results confirm Mi-
croMIL’s ability to extract critical features and remain effective in any scenario.

4 Conclusion

We introduce MicroMIL, the first weakly-supervised MIL framework specifically
designed for conventional light microscopy images, addressing the limitations
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of GNN-MIL approaches that rely on spatial coordinates and exhibit low re-
dundancy tolerance. By integrating deep cluster embedding (DCE) and hard
Gumbel-Softmax, MicroMIL effectively reduces redundancy and selects repre-
sentative instances, enabling a graph-based representation without requiring
absolute spatial positioning while explicitly modeling contextual cues. Exper-
iments on the real-world and BreakHis datasets demonstrate state-of-the-art
performance, improving diagnostic accuracy while maintaining robustness to re-
dundancy. MicroMIL offers a scalable, spatially agnostic solution that advances
weakly-supervised MIL for microscopy imaging in resource-constrained settings.
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