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Abstract. Longitudinal monitoring of multiple sclerosis (MS) lesions
provides crucial biomarkers for assessing disease progression and treat-
ment efficacy. However, it remains challenging to detect and segment
numerous MS lesion instances accurately. One key limitation lies in the
common average blending of sliding-window predictions during inference,
where unreliable patch-level outputs often lead to many false-positive
results. To address this issue, we propose a Calibrated Inter-patch
Blending (CIB) framework for new MS lesion segmentation, leveraging
patch-level segmentation performance as blending weights. Specifically,
our CIB model incorporates a multi-scale design with two additional
prediction heads: one estimates the overall segmentation performance
of the input patch, while the other predicts the performance of smaller
grids within the patch. This dual-head architecture enables the model
to capture both global and local contextual information, reducing over-
confident lesion predictions. During inference, the predicted segmenta-
tion scores serve as calibration weights for adaptively blending patch
predictions. Extensive experiments on the MSSEG-2 dataset demon-
strate that our CIB model can significantly enhance both new MS
lesion detection (e.g., a 12.82% F1 gain) and segmentation (e.g.,
a 4.01% Dice gain) across various backbones. Our code is available at
https://github.com/Yejin0111/CIB.
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1 Introduction

Multiple sclerosis (MS) is a neurological disorder in which the immune system
mistakenly attacks the protective myelin sheath surrounding nerve fibers. This
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disruption interferes with signal transmission between the brain and the rest of
the body, affecting millions of people worldwide [7]. Over time, irreversible harm
or degradation of the nerve fibers will occur [20]. During the clinical treatment,
accurately segmenting MS lesions is crucial for analyzing longitudinal activi-
ties, to assess disease progression and effectiveness of therapies [16]. However,
identifying changes in MS lesions over multiple time points poses a considerable
challenge for clinicians [1], because MS lesions are usually small, numerous, and
can be misdiagnosed to other types of brain lesions (e.g., ischemic vasculopathy
[8]). Further, considering the high cost of manual analysis and the high require-
ment for clinical expertise, a precise segmentation model is highly desirable for
correctly quantifying MS lesion instances in clinical applications.

Deep learning has significantly advanced the segmentation of MS lesions
from brain MRI scans, by exploring diverse strategies for better performance
[21,25,26]. For example, multiple MRI contrasts can be introduced for model
training [12], alongside efforts to tackle class imbalance [28,19] and integrate
anatomical priors [2]. Attention mechanisms [17] have been used to boost MS le-
sion segmentation. Furthermore, Krishnan et al. [10] developed a 3D, multi-arm
U-Net specifically for the segmentation of T2 lesions, trained in a comprehen-
sive multi-center clinical trial dataset for relapsing MS. Additionally, Zhang et al.
[29] studied the multi-rater medical image segmentation for MS, noting the label
quality on the algorithm’s predictive accuracy. Recent attention has been shifted
to the longitudinal MS lesions analysis [5,6], including the categorization of le-
sions as stable, newly formed, shrinking, or expanding [11]. Particularly, Coact-
Seg 23] proposed to segment new MS lesions by utilizing both readily available
single-time-point samples and heterogeneously annotated two-time-point data.
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Fig. 1. Illustration of the sliding window blending technique. The common average
blending heavily depends on the model segmentation quality and often leads to high
false positives, while our proposed calibrated blending (right) weighs each patch pre-
diction adaptively by its learnable calibration score.

We notice that most existing approaches receive 3D patch inputs and utilize
a sliding window technique for inter-patch blending, as illustrated in Figure 1,
which predicts MS lesions patch-by-patch and then averages the predictions for
the final segmentation. However, this average blending approach heavily depends
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on the model segmentation quality and often leads to high false positives in MS
segmentation due to the sparsity and size variation of MS lesions [23,3,19].
This motivates us to propose a Calibrated Inter-patch Blending (CIB) frame-
work to mitigate the over-segmentation of MS lesions. Our key idea is to pre-
dict the segmentation performance of individual image patches, which are then
leveraged to calibrate patch re-composition. Amazingly, such a simple idea signif-
icantly reduces false positives and improves the segmentation performance across
both global metrics (Dice score) and instance-level evaluations (F1 score).
Overall, our contributions are three-fold:

— We propose a Calibrated Inter-patch Blending (CIB) framework for MS le-
sion segmentation, pointing out that re-composing patch-level predictions in
a weighted way can significantly reduce false positives.

— Our CIB framework consists of two regularization heads that predict the
segmentation performance at the patch level and the smaller grid level. The
predicted segmentation performances are used as calibration scores for the
final inter-patch blending.

— Extensive experiments demonstrate significant performance improvements
in new MS lesion segmentation using our CIB framework across various
backbones.

2 Method

2.1 Problem Definition

Preliminary Study. The training set is constructed as (X, Y'). Following [23],
X is a set of two-time-point MRI scans [14], and Y is the new-lesion or full-
lesion label. Figure 1 depicts the sliding window technique during inference,
wherein the segmentation mask is predicted for each patch, and the patches are
re-composed based on their locations. Since there are overlapping patches, the
patch sum is usually averaged to derive the final segmentation P as

P= Ziv:l a; X Pi
=== (1)
Zi:l A;

where p; is the predicted segmentation for each patch z; € X, A; is an all-one
matrix, the sum Zivzl A; counts the total number of overlaps for the patches,
and N is the total number of patches. The weight «; is introduced as a calibrated
weight for each patch, with «; = 1 as “Average Blending”. Simply average strat-
egy often produces a lot of false positives and achieves sub-optimal segmentation
performance due to the sparsity and size variation of MS lesions [23,3,19]. Thus,
we introduce the idea of calibrated blending. Table 1 gives a preliminary ex-
periment, where we directly use the real segmentation performance (i.e., Dice
score between the ground truth and the predicted segmentation masks) of the
patches as the blending weights «; for the calibrated blending, denoted as “Cal-
ibrated Blending (Patch)”. The results show that this simple inference strategy
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Table 1. Comparisons of different inter-patch blending techniques for new MS lesion
segmentation on the MSSEG-2 dataset [3], with the CoactSeg baseline [23]. Note that,
the blending is calibrated by the real segmentation performance.

Method Dice(%)1 Jaccard(%)1 95HD (voxel)] ASD(voxel)||F1(%)1
Average Blending 63.82 51.68 30.35 12.14 61.96
Calibrated Blending (Patch)| 65.58 52.26 39.22 0.47 79.40
Calibrated Blending (Grid) | 69.52 55.75 36.83 0.43 78.11
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Fig. 2. Weighted blending effectively reduces false positives since it assigns different
weights to each patch prediction. Patch weight (Left) can give a low weight to a false
positive prediction based on the average score of its neighboring patches, while grid
weight (Right) performs in a smaller region.

yields a notable improvement in both new lesion segmentation (a 1.76% gain in
Dice) and detection (a 17.44% gain in F1).

We further extend the idea to a fine-grained level, i.e., performing the blend-
ing at the grid (sub-patch) level as

i=1 Pi
_g 1A- ZO‘JXPU (2)
i=1 j=1

where p;; is the predicted segmentation of the j* grid in the i'* patch p;, and M
is the number of grids (set to 8 for simplicity, forming a 2 x 2 x 2 cube), and the
weight o; represents the grid weight. As shown in Table 1, the grid-calibrated
blending, denoted as “Calibrated Blending (Grid)”, exhibits a further 4% gain in
Dice, compared to the “Calibrated Blending (Patch)”.

Figure 2 illustrates how the application of patch or grid weights contributes to
the reduction of false positives during the inference blending. The patch weight-
ing scheme allows removing false positives based on its neighbor patch weights.
As shown on the left of Figure 2, while the overall segmentation performance of
the testing patch (green box) is the same for both true positive and false positive
lesions, neighbor patches of false positives often yield low segmentation perfor-
mance, while those of true positives exhibit significantly better performance.
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Consequently, after inter-patch averaging, the region of false positives will have
a low predicted value, leading to rejection during inference. Furthermore, as
demonstrated on the right side of Figure 2, even with a high overall performance
(e.g., an 80% Dice score), false positives may still exist because their size is too
small to influence the overall score. Here, the grid weighting scheme effectively
isolates small lesions, assigning them a low score to facilitate their rejection dur-
ing testing. Additionally, learning these contexts can further regularize the model
training [27] and our experiments find that employing a simple Dice score as the

context supervision has already achieved superior performance, see Table. 5.
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Fig. 3. Overview of our proposed CIB framework. We introduce two heads to predict
the segmentation performance of the input patch and smaller grids, respectively.

2.2 Proposed Approach

Since ground truth during inference is unknown in practice or cannot be used
for model tuning, here we describe our approach to predict the segmentation
performance at the patch and grid levels, as shown in Figure 3. In particular,
we set CoactSeg [23] as the baseline, which is trained on two types of datasets:
full-lesion segmentation dataset (MS23-v1) and new-lesion segmentation dataset
(MSSEG-2). The segmentation model follows a typical U-Net architecture, which
includes an encoder and a decoder. The overall pipeline can be summarized by
the following function:

pi = Fy(zilc) 3)

where ¢ is a condition to control the segmentation setting, e.g., full-lesion pre-
dictions for the single-time-point scan or new-lesion predictions for the given
two-time-point data. Fy denotes the baseline model [23].

We introduce two additional components: the patch head, which processes
the highest feature from the encoder to estimate the segmentation performance
for the corresponding patch, and the grid head, which utilizes intermediate fea-
tures from the decoder to estimate the grid-level performance. The patch head
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consists of a linear layer followed by a sigmoid function. The grid head involves
transforming grid features through a 3D convolutional layer, followed by average
pooling and a linear layer with a sigmoid function.

We train the patch head and the grid head using the mean square error
(MSE) loss, which calculates the difference between the predicted segmentation
performance d and the ground truth d obtained by comparing the patch predic-
tions p; with the corresponding lesion mask y; € Y. Specifically, the training
losses for the patch head and grid head are:

di = S(Pi,Yi); Lpateh = MSE(d;, d;) (4)
M A

dij = S(Pij»Yij); Loria= Y  MSE(dij, dij) (5)
j=1

where S is a similarity function, set as a common Dice score. Finally, the total
training loss is a weighted sum of a segmentation dice loss DSC(p;,y;) (same
as [23]) and our two regularization losses:

‘Ctotal = DSC(puyz) + A1 X £patch + AQ X £grid- (6)

3 Experiments and Results

Datasets. Following [23], our model is trained by two MRI datasets: MS23-v1
with full-lesion labels and MSSEG-2 with new-lesion labels. Therefore, there are
38 single-time-point [23] and 40 two-time-point [3] brain FLAIR scans, respec-
tively. We adopt an identical dataset split as [23] and implement a weighted
cropping strategy [28] to extract 3D brain patches sized 80 x 80 x 80.

Implementation Details. We set the batch size as 8 and each batch contains 4
two-time-point samples and 4 single-time-point samples for the joint training. We
utilize the Adam optimizer with a learning rate of le-2. Then, we train the base-
line model with only the patch head for 10k iterations (i.e., Ay =1 & A2 = 0).
Subsequently, both patch and grid heads are trained for additional 10k iterations
(i.e., A1 = 1 & Ay = 1). For fair comparisons, all experiments are conducted
in the same environment. The computational complexity of the two prediction
heads is 7.18 GFLOPs, and the number of parameters is only 7.35 K.

3.1 Performance of new MS Lesion Segmentation

The proposed CIB design is primarily evaluated on new-lesion segmentation with
performance metrics following [23]. Here, F1 is used to assess the detection ca-
pability of MS lesion instances [4]. Table 2 shows that our method significantly
enhances new-lesion segmentation performance, outperforming CoactSeg by 4%
in Dice and 12.82% in F1. Furthermore, comparative analysis with individual
human annotations (from the publicly available MSSEG-2 dataset [3]) validates
the superior performance of our approach. Meanwhile, applying our CIB de-
sign to SNAC [14] and Neuropoly [13] also yields gains in Dice and F1 scores,
indicating the general applicability of our method across diverse architectures.
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Table 2. Comparisons of new MS lesion segmentation on MSSEG-2. The human ex-
perts’ performance is shown based on their individually annotated results. Surpassed
human metrics are denoted in grey.

Method Dice(%)1 Jaccard(%)1 95HD (voxel)) ASD(voxel))|F1(%)1
SNAC [14] 62.70 49.65 36.18 13.32 60.32
Neuropoly [13] 56.72 43.23 72.00 27.75 3.58
CoactSeg [23] 63.82 51.68 30.35 12.14 61.96
SNAC+CIB (Ours) 63.03 50.18 36.08 12.93 61.05
Neuropoly+CIB (Ours)| 61.33 48.04 43.44 19.20 23.75
CoactSeg+CIB (Ours) | 67.83 54.22 21.84 9.58 74.78
Human Expert #1 77.52 65.76 5.47 82.34
Human Expert #2 58.11 N/A N/A
Human Expert #3
Human Expert #4 N/A N/A
s ] t i |
== W=y |
\\\\/ S8 \/ \/ \/ \/
[ Ground truth ] [ CoactSeg ] [ Ours ] [ Ground truth ] [ CoactSeg ] [ Ours ]

Fig. 4. Visual comparisons for new MS lesion segmentation between our proposed
method and CoactSeg on MSSEG-2. Note that, most false-positive instances are suc-
cessfully suppressed by our CIB framework.

Visualization Comparison. In Figure 4, we compare the new-lesion segmen-
tation predictions of our approach with CoactSeg on the MSSEG-2 dataset.
CoactSeg tends to generate false positive new lesions, a challenge effectively
addressed by our method. On the left, our approach accurately identifies 4 new
lesions, while CoactSeg generates several false positives (green arrows). The right
side depicts a more challenging case, where CoactSeg produces numerous new
lesions, whereas our approach significantly reduces false positives.

False Positives. We further report the False Discovery Rates (FDR, defined as
FP/(FP+TP)) for CoactSeg and our model: 44.38% vs. 31.23%, demonstrating
that our CIB design reduces FDR by 13%. Moreover, our model can be seam-
lessly integrated with the Tversky loss [19], specifically designed to address false
positive and false negative issues. The combined model achieves a higher F1 score
of 75.80%, yielding a 1.02% improvement in F1 and setting a new benchmark
for new MS lesion segmentation on MSSEG-2.

3.2 Discussions

Ablation Study. Table 3 shows the ablation studies for each component of our
proposed CIB in the new-lesion segmentation task on MSSEG-2, where “weight"
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Table 3. Ablation studies for new MS lesion segmentation on MSSEG-2.

Weight [Patch head|Grid head|Dice(%)1 Jaccard(%)1 95HD (voxel)) ASD(voxel)||F1(%)t
63.82 51.68 30.35 12.14 61.96

v 63.81 50.99 29.71 11.87 68.07

v v 66.01 52.78 26.89 10.52 74.76

v v 66.84 53.02 24.34 9.17 64.15

v v v 67.83 54.22 21.84 9.58 74.78

refers to using the predicted performance to weigh each patch during inference.
The findings reveal that: 1) Solely using the patch head for regularization im-
proves performance across several metrics, and combining both the patch and
grid heads as regularization further enhances performance across all metrics, in-
dicating their contribution to segmentation quality. 2) Introducing the weighted
calibration approach significantly improves segmentation performance across all
metrics. 3) Utilizing the grid head for additional regularization at the grid level
leads to a notable improvement in the F1 score.

Table 4. Performance of full MS lesion segmentation on MS23-v1 [23].

Method Dice(%)1 Jaccard(%)1 95HD (voxel)] ASD(voxel)]|F1(%)1|FDR (%)-Medium| FDR (%)-Large]
CoactSeg [23] 75.70 61.53 14.91 1.66 50.17 74.29 74.49
CoactSeg [23]+CIB| 76.22 61.76 7.87 0.88 52.20 72.97 62.48

Full MS Lesion Segmentation. We further give the performance of full MS
lesion segmentation on MS-23v1 [23] in Table 4. Implementing our CIB design
with CoactSeg further improves performance by 0.52% in Dice and 2.03% in
F1, highlighting the effectiveness of CIB for the full MS lesion segmentation
task. Furthermore, we set 50 voxels as the threshold to separate MS lesions
into medium and large categories following [15], and FDR can be reduced for
both categories. Note that, tiny lesions (i.e., < 3mm) are usually considered
nonspecific and are filtered during inference to ensure fair comparisons [2,23].

Table 5. Comparisons by using different weighting strategies on MSSEG-2.

Method Dice(%)T Jaccard(%)1 95HD (voxel)] ASD(voxel)}|F1(%)7
Gaussian Filter [9] 64.08 50.81 30.77 12.29 66.16
CLS Weights 63.51 50.48 42.25 11.78 63.51
SEG Weights (Ours)| 67.83 54.22 21.84 9.58 74.78

Weighting Strategies. Table 5 compares our proposed weighted method with
the Gaussian filter method [9]. The results underscore the superiority of our
approach. Unlike Gaussian filtering, which concentrates solely on the prediction
at the center of the patch, our method acknowledges that lesions can appear at
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various locations. We also compare our calibration method using different types
of context information. Here, we employ the classification performance (i.e., is
there a lesion or not) for the inter-patch blending, denoted as “CLS Weights”. The
results show that using the Dice score as the calibrated weights (“SEG Weights”)
is better than the classification-based one.

4 Conclusion

In this paper, we have presented a new sliding window blending strategy for
multiple sclerosis lesion segmentation by introducing the segmentation perfor-
mance as weights to calibrate the inter-patch blending. The proposed Calibrated
Inter-patch Blending (CIB) framework is designed to predict the Dice scores for
each input patch and smaller grids. During testing, the predicted Dice values
are employed to adaptively weigh the patch predictions. Our comprehensive ex-
periments have shown that our proposed CIB framework significantly enhances
the performance of both all and new MS lesion segmentation tasks. Future work
will include more statistical analysis [18,24,22].
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