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Abstract. Optical coherence tomography angiography (OCTA) is an
indispensable modality in ophthalmic imaging, providing high-resolution
visualization of retinal microvasculature. Recently, deep learning ap-
proaches have been explored to reconstruct OCTA images; however,
significant challenges persist, particularly the reliance on high-quality
target data for model training, which is often impractical due to limi-
tations in hardware and acquisition protocols. In this work, we present
a novel pipeline for deep learning-based OCTA imaging from repeated
OCT B-scans, circumventing the need for high-quality training labels.
We introduce an Intra-View Enhancement (IVE) module together with
a novel loss function Cross-View Matching (CVM) to improve the imag-
ing. The proposed pipeline is evaluated on a local dataset, demonstrating
a relative improvement of 4.97% and 27.42% in PSNR and CNR over
state-of-the-art learning-based OCTA method respectively. Our results
underscore the effectiveness and clinical viability of the proposed ap-
proach for OCTA images, highlighting its potential to advance imaging
capabilities in challenging clinical environments.

Keywords: Optical Coherence Tomography Angiography - Intra-View
Enhancement - Cross-View Matching - Noisy Label

1 Introduction

Optical coherence tomography angiography (OCTA), a contrast-free functional
extension of OCT, has emerged as a pivotal medical imaging tool for microvascu-
lar visualization and analysis [7],[29]. Conventional OCTA employs decorrelation-
based analysis of repeated B-scans to differentiate vascular flow signals from
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static tissue components, which is highly dependent on handcrafted filters to
analyze temporal variations. Current technical approaches encompass several
distinct methodologies. Correlation mapping OCT |[6] utilizes temporal correla-
tion analysis to enhance microvascular contrast through static or dynamic tissue
discrimination. Doppler OCT [31] quantifies flow velocity through phase shift de-
tection in sequential scans. Split-spectrum techniques demonstrate divergent im-
plementations. Split-Spectrum Amplitude-Decorrelation Angiography [11] relies
on amplitude decorrelation metrics, whereas Split-Spectrum Amplitude-Phase
Gradient Angiography [16] integrates phase gradient analysis to optimize slow-
flow detection sensitivity, providing great performance in reducing motion ar-
tifacts. Optical Microangiography (OMAG) [26,27] enhances the resolution of
vascular imaging through the overlap of B-scan acquisition protocols, achieving
a superior spatial sampling density. These methods require multiple repeated
scans to obtain an enhanced optimal image quality. Due to inevitable motion,
current commercial machines often adopt four overlapping scans to reduce noise.

Recent advances in learning have expanded the scope of OCTA image gen-
eration. Lee et al. [13] employed a symmetric autoencoder to reconstruct OCTA
images from repeated B-scans, while a texture-guided U-Net [34] with Euclidean
distance loss improved image quality. Liu et al. [18] leveraged repeated scans at
identical locations, integrating low-noise targets to improve the signal-to-noise
ratio. The introduction of 3D GANs further refined image translation; Li et al.
[15] converted repeated OCT B scans into 3D volumes and proposed vessel pro-
moted guidance and heuristic contextual guidance modules to improve quality
and flow consistency. However, imperfect labeling remains a challenge. The sus-
ceptibility to noise significantly complicates the acquisition of training data and
influences the performance of the model, presenting a critical barrier to prac-
tical implementation. Jiang et al. [12] addressed this with a weakly supervised
approach using the Noise2Noise (N2N) strategy [21] to learn from noisy OCTA
images, but with limited reduction in speckle noise.

Beyond providing OCTA from consecutively sampled data, several enhance-
ment denoising algorithms have been developed as plug-and-play modules to
enhance image quality. Liu et al. decomposed OCTA images into the wavelet
domain and separated the signal from the noise based on the Bayesian posterior
probability [17]. Zhang et al. used a multiple wavelet-FFT approach to reduce
motion artifacts [32]. Yang et al. utilized shearlet transforms to differentiate tis-
sue and vasculature in 3D volumes [30]. Li et al. simplified the optical shadow
attenuation model to a linear illumination transformation and adopted an ad-
versarial network to learn the transformation parameters [14]. Ge et al. proposed
S2Snet [3], a self-supervised network to reduce OCT speckle noise. Ramos-Soto
developed the Metaheuristic-Driven Bayesian Speckle Denoising framework to
enhance OCTA images through metaheuristic optimization. Ma et al. [20] pro-
posed perceptual and low-rank regularized transformer for denoising. Schotten-
hamml et al. introduced an unsupervised denoising algorithm, SSN2V, to distin-
guish informative and non-informative speckle, preserving sharper image details
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[21]. However, these plug-and-play modules are designed for general purposes
and are not fully aligned with the specific needs of OCTA imaging.

Motivated by these limitations, we propose a novel pipeline, ICENet, aimed
at reduced speckle noise in OCTA imaging. Drawing inspiration from N2N [21],
our pipeline is designed to operate without reliance on high quality labels. By
leveraging noisy labels, the proposed method substantially reduces data collec-
tion requirements, enhancing efficiency and scalability, particularly within clin-
ical environments where obtaining pristine data is challenging. To mitigate the
negative effect of noisy data, we propose a novel Intra-View Enhancement (IVE)
module to enhance images. We also introduce a novel loss function specifically
tailored for learning from noisy labels [25], which enables the network to provide
better performance with imperfect data, resulting in improved OCTA imaging.
Quantitative evaluations demonstrate that our approach yields significant im-
provements in image quality, achieving superior reconstruction accuracy. The
proposed pipeline generalizes effectively across diverse datasets, underscoring its
suitability for a wide range of clinical applications.

Our main contributions can be summarized as follows.

— We propose a novel intra- and cross-view enhancement approach to learn
from noisy data for enhanced OCTA imaging.

— By introducing the IVE module, our network effectively handles noise in
low-quality training data, leading to improved image clarity, which is crucial
for accurate diagnosis and analysis.

— We propose a novel CVM loss function specifically designed for noisy labels,
which significantly reduce the speckle noise in OCTA imaging.

— The proposed pipeline demonstrates a 1.64 dB or 4.97% improvement in
PSNR, 2.80% improvement in SSIM, and 27.42% improvement in CNR over
existing learning-based methods in image quality on the local dataset.

2 Methodology

As demonstrated in Fig. 1, our pipeline provides an integral process for recon-
structing consecutive B-scans into OCTA images without high-quality training
labels. Our model adopts pretrained Swin-Unet [2] as the backbone. The IVE
module is introduced to enhance the output, which will be presented in Section
2.1. Meanwhile, a novel CVM loss function is designed to decrease the negative
effect of noise on training data in Section 2.2. The implementation details and
measurement metrics are provided in Section 2.3.

2.1 Intra-View Enhancement

As depicted in Fig. 1, the IVE module divides the image into smaller, localized
blocks. The IVE module involves computing the similarity between these blocks
to capture their inherent patterns and structures. The module is designed to
improve the representation of features by merging features from the most similar
blocks, thereby capturing richer contextual information.
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Fig. 1: Overall structure of our proposed ICENet. The proposed ICENet employs
Swin-Unet as the baseline together with additional Intra-View Enhancement
(IVE) module and Cross-view matching (CVM) loss function. The symbols will
be explained in Section 2.2.

For each block, we dynamically select the top-k£ most similar blocks based
on the similarity matrix, where k is an adjustable parameter set to 4 in our ex-
periment, similar to that in BM3D [5]. All blocks undergo an encoding process
with the ResNet-18 backbone in which the pixel-level data are transformed into
a feature representation. Additionally, the similarity scores for the current block
are spatially expanded and concatenated with the features to explicitly incorpo-
rate similarity information. These features are concatenated along the channel
dimension and passed through a decoder that outputs the enhanced block.

2.2 Cross-View Matching Loss

Loss Function In a supervised network, the mean squared error (MSE) is
widely adopted to estimate the difference between the output and ground truth.

MSE(f(2€),3) = 37 > (@) =i, (1)

where f(x;; ©) indicates the output, y; indicates the ground truth, and N stands
for the number of pixels.

However, MSE has been shown to be sensitive to outliers or noise in the data
[1,23]. Abundant solutions are presented to handle outliers. Generalized cross
entropy (GCE) [33] has been shown to be effective in handling noisy labels and
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efficient in model training. With the inspiration of MSE and GCE, we propose
a novel loss function called Generalized Mean Squared Error (GMSE).

LN (MSE(f(20),y) + ) =1 1 n (If(2::0) —yill> + )¢ — 1
GMSE = NZ . = NZ .

i=1

i=1

(2)
where € is a small value to keep numerical stability, and ¢ € (0, 1]. ¢ is set to 0.7
based on our ablation study in Fig. 3.

To further improve the quality of the images and reduce the influence of noisy
training data as much as possible, we provide Cross-View Matching (CVM) loss
to achieve higher quality. The output of the IVE module is divided into K blocks
with a size of 16 x16. As presented in Fig. 1, for each block §; in the output of the
IVE module, the first step is to find its n most similar blocks from other regions.
We set n = 4 empirically in our experiments. We then compute a weighted block
p; based on the similarities between ¢; and the identified n blocks:

n 1
MSE((Sj,Si)-‘rL
P = § Zn 1 Sy (3)
=1 k=1 MSE(d;,5,)+t

where s;,4 € {1,--- ,n} denotes the it" similar blocks, and ¢ is a small parameter
to keep computational stability.
Integrating Eq. (2) and Eq. (3), we propose to compute a CVM loss:

K
(llpj = oflI* + )7 -1

1
Levm = & > 7 ; (4)
Jj=1

where o denotes the ground truth label for block d;.

Noise-to-Noise Training In practice, gold ground truth label ¢9 is not avail-
able. We use noisy label o; in the training. We have:

oj =0] +n, (5)

The actual loss function based on Eq. (4) would be:

K
. 1~ lpj—ojlP +e)? -1
LCVM:?Z : Jq (6)

J=1

The item ||p; — o;]|? in Eq. (6) is further expanded to:

Ip; — oil* = llp; — o —nll* = llp; — 091> = 2n] p; + (n] nj — 2n] o), (7)

where the first term in Eq. (7) is the same term as in Eq. (4), and the third
term is irrelevant to the model parameter. The second term has been proved to
approximate 0 when computing the mean value according to the Lindeberg-Levy
central limit theorem [12,4].



6 J. Zeng et al.

Table 1: Comparison of OCTA imaging methods. The best result is colered by

red, and the second-best result is colered by blue.

Methods PSNR(dB)T SSIM (%) 1 CNR 1
OMAG]26] 31.37£0.53 84.03 £0.36 9.2
Unet|[22] 27.58 + 0.23 79.41 +0.11 8.5
Pix2Pix[10] 30.97 £0.12 85.41 £0.16 10.7
Swin-Tiny[19] 30.55 £0.14 83.30 £ 0.07 9.4
VQ-121[3] 31.03 £0.22 85.79 £0.19 10.1
Jiang’s Method[12] 32.97 £0.36 88.54 £0.38 12.4
Ours 34.61 +0.11 91.02 £0.18 15.8
Based on these derivation procedure, we have the formula:
1 (py —oilP e —1 1 (llps =N+ -1
argmin ; Up; = o Hq ) = argminz- J; ] 7 . (8)

which indicates that the training with noisy data has similar output to the
training with high quality ground truth data.

2.3 Implementation Details

The experiments are carried out on our local dataset. Due to the impossibility to
obtain an ideal ground truth in OCTA, we compute pseudo high quality images
and pseudo noisy label based on the OMAG algorithm with the input of 1,000
consecutive samples and 100 consecutive samples, respectively. The former are
used for evaluation and the latter are used for training. We employ pretrained
Swin-Unet to initialize the backbone in ICENet. The input of ICENet are 4
consecutive B-scan images. Each sample is resized to 896 x 896 and divided into
56 x 56 blocks with the size of 16 x 16. The initial learning rate is 0.0002, which
gradually decreases with the progress of the training. We used 4 NVIDIA Geforce
RTX 2080Ti GPUs, and the batch size for each GPU is 4.

3 Experimental Results

3.1 Dataset and Evaluations

We use a Cirrus Angioplex SD-OCT (Carl Zeiss Meditec, Inc, Dublin, CA) with
access to the raw data for data collection. We first collect repeated B-scans
from rodents and monkeys using the machine, together with the corresponding
regular OCTA scans. In the imaging, the animals are sedated using a ketamine
and xylazine cocktail. Vital signals, including heart rate and respiration rate
are continuously monitored throughout the imaging sessions. The animals are
placed in a prone position with their head restrained stereotaxically. Note that
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Table 2: The ablation studies for the proposed Intra-View Enhancement (IVE)
module and the Cross-View Matching (CVM) loss.

IVE CVM PSNR(dB)T SSIM(%) 1
X X 33.09 £ 0.14 88.23 + 0.08
v X 33.84 4 0.10 90.06 + 0.15
v v 34.61+0.11 91.02 & 0.18

movement of the animal is minimal during the entire imaging period, such that
the OCTA B-scans are well aligned.

A total of 200 B-scan sets are collected from various locations, each consisting
of 1,000 B-scans stored as 1000x1024 PNG images. Based on these repeated
B-scan OCT images, we compute the corresponding pseudo ground truth for
each location by the OMAG algorithm. Among these, 173 sets are designated
for training, with the remainder allocated for testing. To quantitatively show
the performance of our approach, we compute the peak signal-to-noise ratio
(PSNR), structural similarity (SSIM) [28] and contrast-to-noise (CNR) [9] as
the evaluation metrics.

3.2 Comparison Experiments

To evaluate the proposed ICENet, we compare it with two convolution-based
baselines: Unet [22] and Pix2Pix [10]; two transformer-based baselines: Swin-
Tiny [19], VQ-I2I [3]; one traditional medical image translation method: OMAG
[26]; and one weakly supervised learning-based algorithm: Jiang’s method [12].
Quantitative results are provided in Table 1 to compare the performance
between the proposed method and other algorithms. Each evaluation follows the
same experimental settings, with 4 OCT repeated smaples input. As shown in the
table, all learning-based methods demonstrate a higher variance than traditional
computation. The proposed method outperforms the second best method with a
4.97% higher PSNR, 2.80% higher SSIM, and 27.42% higher CNR. We provide
visualization results in Fig. 2. By comparing all the results, it is noteworthy that
our pipeline can enhance the image effectively, meanwhile preserving details.

3.3 Ablation Study

To evaluate the effectiveness of the proposed IVE module and CVM loss function,
we train different variants with the same backbone. As shown in Table 2, IVE
leads to 2.27% higher PSNR. When incorporating both modifications together,
the PSNR witness to an increase of 4.59%. Regarding SSIM, the two variants
show improvements of 2.07% and 3.16%, respectively.

We further perform ablation study for parameter ¢ in Eq. (4). The results
in Fig. 3 shows that our model achieves the best performance when setting ¢ to
0.7, which is fixed in all other experiments mentioned in our work.
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(a) Ground Truth (b) OMAG [26] (c) Jiang’s [12] (d) Ours

Fig. 2: Samples of OCTA Imaging. (a) the pseudo ground truth from 1000 over-
laping scan (b) the results by regular OMAG by current commercial machine
(¢) the results by Jiang’s method and (d) our results.

4 Conclusion

In this work, we propose an intra- and cross-view enhancement pipeline for
OCTA imaging, which computes OCTA from consecutive B-scans. Experimen-
tal results demonstrate that with limited repeated B-Scan input, our approach
outperforms baseline learning-based OCTA imaging methods. The ablation re-
sults also demonstrate that the proposed IVE module and the CVM loss func-
tion help the network mitigate the negative influence of noisy labels. Compared
with other algorithm, it provides a 4.97% higher PSNR, 2.80% higher SSIM, and
27.42% higher CNR. The findings suggest that the proposed pipeline serves as an
effective solution to improve the clinical efficiency and quality of OCTA imaging.
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Fig. 3: The ablation study on different values of parameter ¢ in Eq. (4). We follow
the setting with the best result to conduct other experiments.
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