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Abstract. Ophthalmologists often rely on multimodal data to improve
diagnostic precision. However, data on complete modalities are rare in
real applications due to a lack of medical equipment and data privacy
concerns. Traditional deep learning approaches usually solve these prob-
lems by learning representations in latent space. However, we highlight
two critical limitations of these current approaches: (i) Task-irrelevant re-
dundant information existing in complex modalities (e.g., massive slices)
leads to a significant amount of redundancy in latent space representa-
tions. (ii) Overlapping multimodal representations make it challenging
to extract features that are unique to each modality. To address these, we
introduce the Essence-Point and Disentangle Representation Learning
(EDRL) strategy that integrates a self-distillation mechanism into an
end-to-end framework to enhance feature selection and disentanglement
for robust multimodal learning. Specifically, Essence-Point Representa-
tion Learning module selects discriminative features that enhance dis-
ease grading performance. Moreover, the Disentangled Representation
Learning module separates multimodal data into modality-common and
modality-unique representations, reducing feature entanglement and en-
hancing both robustness and interpretability in ophthalmic disease diag-
nosis. Experiments on ophthalmology multimodal datasets demonstrate
that the proposed EDRL strategy outperforms the state-of-the-art meth-
ods significantly. Code is available at GitHub Repository.

Keywords: Missing Modality · Multi Modality · Ophthalmic Disease

1 Introduction

In recent years, using multimodal data sources has become a common method
to enhance diagnostic accuracy for ophthalmic diseases [25,22,8]. In these meth-
ods, Optical Coherence Tomography (OCT) and Retinal Fundus Imaging are
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Fig. 1: Overview of feature representation analysis. Baseline methods employ Vi-
sion Transformer [3] to extract and concatenate features from both modalities.
(a) t-SNE [12] visualization illustrates the distribution of modality-specific and
modality-common features, comparing a baseline method with our strategy. (b)
Cosine distance quantifies feature separability by measuring how effectively fea-
ture from different samples are distinguished within each modality.

typically used modalities [14,13]. Existing methods primarily focus on modality
feature fusion, employing spatial and channel attention [30,26,20] or evidence
fusion models with the inverse gamma prior distribution [31].

Although numerous representation learning methods have been developed
to address missing modality scenarios, two major issues still exist. (1) Task-
irrelevant Redundant Information: In the absence of precise annotations,
such as patch-wise labeling for regions affected by ophthalmic diseases in fundus
and OCT images [7,15], feature representations often contain both task-relevant
and irrelevant information relevant to the task [6,21,19,18]. As shown in Fig. 1
(b), the baseline method exhibits lower cosine distance between distinct sam-
ples, indicating an insufficient ability to capture distinguishable features and
leading to lower grading performance [17,23]. (2) Overlapping multimodal
representations: Most methods [2,28,29] that focus on cross-modality common
representation extraction lead to feature representations of different modalities
that have a substantial amount of cross-modal shared information. As shown in
Fig. 1 (a), there exists a significant overlap between features of different modal-
ities, hindering the model from utilizing the modality-unique information for
diagnosis [24,27].

To this end, we propose the Essence-point and Disentangle Representation
Learning (EDRL) framework. The Essence-point Representation Learning (EPRL)
module identifies essence-points that highlight discriminative information within
each modality, reducing task-irrelevant redundancy. For feature disentanglement,
the Disentangle Representation Learning (DiLR) module decomposes embed-
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Fig. 2: Illustrates our proposed EDRL framework, comprising two key modules:
EPRL and DiLR. The EPRL module maintains series of essence-points to ex-
tract discriminative features (e.g., FM1 and FM2) from each modality. The DiLR
module disentangles these features into independent modality-common (FCom)
and modality-unique (FUni) representations, leveraging attention mechanisms
to align shared information while preserving modality-specific characteristics.
FCom and FUni are then concatenated into (FCombined) for grading tasks.

dings into modality-common and modality-unique parts. It encourages cross-
correlation alignment toward identity for shared features while minimizing cor-
relation across unique components. We also apply self-distillation between two
pipelines (complete vs. missing modalities), where the complete pipeline guides
missing modality reconstruction to enhance robustness. EDRL thus minimizes
redundancy, reduces inter-modality overlap, and improves multimodal discrimi-
nation and generalization.

Overall, our contributions are threefold. (i) We propose EPRL framework for
discriminative instance selection with self-distillation. (ii) We introduce DiLR
to disentangle features into modality-unique and modality-common representa-
tions. (iii) We demonstrate effectiveness on three ophthalmology datasets.

2 Methods

2.1 Problem Formulation

We represent A = {aj , bj}Kj=1 as a multimodal dataset with K patient samples.
Each ophthalmological sample aj consists of L inputs from different modalities,
written as aj = {alj}Ll=1, where L denotes the number of modalities and bj ∈
{1, 2, . . . , D} is the label for aj , with D being the number of grading categories.
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We propose an EDRL framework addressing missing modalities through: (1)
Inter-modality missing (complete modality absence) and (2) Intra-modality miss-
ing (natural noise addition). To reduce task-irrelevant redundancy, we introduce
EPRL for task-relevant selection. For overlapped representations, we propose
DiLR to generate independent modality-unique and modality-common features.
The framework is shown in Fig. 2.

2.2 EPRL: Essence-Point Representation Learning

We propose EPRL to filter out information in the feature map that is indis-
criminative to the ohthalmic disease grading task. Since the task-discriminative
information follows conditional distributions given modality type m and class
label c, EPRL maintains m × c learnable essence-points Ec

m for each m and
c, aiming to model discriminative information distribution given m and c. To
guide essence-point learning during training process, we need to match these
essence-points with the feature representation based on m and c. Such process
can be implemented by the matching loss function LMatching. For each modality
m, the loss encourages the feature representation F c

M to be aligned with their
corresponding essence-points Ec

m, while simultaneously minimizing their simi-
larity with essence-points from other classes. Suppose N is the batch size and K
is the total number of classes, LMatching with cosine similarity is defined as:

LMatching = − 1

B

N∑
i=1

Sim(Fc
M ,Ec

M )− 1

2K − 1

2K−1∑
j ̸=c

Sim(Fc
M ,Ej

M )

 . (1)

During the inference, due to the lack of guidance by the label, EPRL will conduct
the correlation assessment and select the highest similarity essence-point.

The Guiding process aims to generate guiding tokens GM
uni that direct the

multi-modal representations {FM1, FM2} to focus on task-relevant regions while
eliminating unrelated information. Assuming that the essence-points follow a
Gaussian distribution in each modality, we first employ an MLP to predict the
mean and variance of the distributions for the essence-points in label c, denoted
as N c

oct and N c
fundus. The guiding tokens GM1

uni and GM2
uni are sampled from them,

respectively. Subsequently, to obtain the cross-modality shared representation,
we use the Product-of-Experts [5] to generate the joint distribution N c

Joint based
on the two individual distributions N c

oct and N c
fundus by assuming independence.

Then, guiding token Gcom is randomly sampled from N c
Joint.

2.3 DiLR: Disentangling Learning Representations Module

To decouple the representation into independent modality-unique and modality-
common features, we introduce the DiLR module. We first decompose the feature
embeddings in EPRL FM1,FM2 ∈ RD into two distinct parts: Fcom

M ∈ RDc ,
Funi

M ∈ RDu , where Dc + Du = D. We assume Dc represents the common
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features across the modalities, while Du captures the modality-specific features.
Subsequently, the guiding tokens GM1

uni, GM2
uni, and Gcom from EPRL are used to

instruct the task-discriminative information selection in FM1 and FM2 through
cross-attention. Its output, with task-unrelated information removed, Fcom′

M1 and
Fcom′

M2 , should remain highly similar, while Funi′

M1 and Funi′

M2 are expected to be
decorrelated from each other.

With this in mind, we measure the similarity of two embeddings FM1,FM2 ∈
RD through the corrleation matrix:

cij =

∑
b FM1,b,iFM2,b,j√∑

b(FM1,b,i)2
√∑

b(FM2,b,j)2
, (2)

where b indexes batch samples, and i, j indexes the dimension of the embed-
dings. Cij ∈ RD×D is a square matrix with values ranging from -1 to 1. In Cij ,
we select the submatrix Ccom ∈ RDc×Dc that only utilizes the common dimen-
sions from FM1 and FM2 to denote the similarity between two common features
Fcom

M1 and Fcom
M2 . Since Fcom

M1 and Fcom
M2 should remain high in similarity, Ccom

should approach the identity matrix. Cuni is expected to approximate a target
matrix with zero diagonal conversely. Thus, the common loss and unique loss
are respectively defined as:

Lcom =
∑
i

(1− ccii)
2
+ λc ·

∑
i

∑
j ̸=i

c2cij , (3)

Luni =
∑
i

c2uii + λu ·
∑
i

∑
j ̸=i

c2uij . (4)

To calculate these losses, we design a realignment network. FUni
M conducts a

self-attention process to extract finer-grained features. An average operation is
then employed to squeeze FUni

M . For extracting the common information from
both modalities, we utilize the shared features sampled from EPRL network as
the guiding token (query), while Fcom

M1 and Fcom
M2 serve as key and value for two

cross-attention modules respectively to allow the model to extract task-related
common features. Subsequently, FUni

M and FCom
M are concatenated as FM1 and

FM2 for further computation of the correlation matrix and its loss. FM1 and
FM2 are concatenated to form a combined feature FCombined.

2.4 Unified Self-Distillation Mechanism

Specifically, feature-level and logits-level consistency are employed to guide the
model towards generating more accurate representations for incomplete modal-
ities. For feature distillation, we employ Maximum Mean Discrepancy loss to
minimize the discrepancy between combined features Fmiss

combine and F complete
combine .

Lfeatures =
1

B

b∑
j=1

D̂T (F
miss
combine, F

complete
combine ), (5)
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where
DT (x, y) ≜ ∥Ex[φ(X1)]− Ey[φ(X2)]∥2T , (6)

where φ(·) is a feature transformation, and T is the Reproducing Kernel Hilbert
Space [1,16]. For logits distillation, we apply Jensen-Shannon (JS) divergence [9]
to minimize the difference between the logits of different modality-missing cases:

DJS(p1 ∥ p2) =
1

2
(DKL(p1 ∥ q) +DKL(p2 ∥ q)) , (7)

where q represents the average distribution of the logits, and the corresponding
logits distillation loss is:

Llogits = DJS(MLP (F 1
Combibed) ∥ MLP (F 2

Combined)). (8)

3 Experiment

3.1 Datasets

We evaluate the proposed framework on three public multimodal datasets from
Harvard-30k [11]: Harvard-30k AMD, DR, and Glaucoma, which focus on Age-
related Macular Degeneration (AMD), Diabetic Retinopathy (DR), and Glau-
coma. The datasets provide four-class grading for AMD and two-class grading
for DR and Glaucoma, with fundus images of size 448 × 448 and OCT images
of size 200 × 256 × 256 (200 OCT slices).

We compare our model with three state-of-the-art multi-modality fusion
methods, as shown in Table 1. For baseline, we use Vision Transformer [3] and
UNETR [4] as backbones for Fundus and OCT, respectively, and directly con-
catenate their feature maps for classification. Compared methods include: (1) B-
IF (early fusion); (2) M2LC [26], combining channel and spatial attention; and
(3) IMDR [10], which uses mutual information loss for cross-modality decou-
pling. Evaluations are conducted under three conditions: (1) complete modality,
(2) noisy modality, and (3) missing modality.
Complete Modality and noisy modality Setting. In the ideal scenario
without any missing or noise, our model achieves the best performance among
the models we test. Building upon this, we also test our approach under condi-
tions where various Gaussian noise with different variance is introduced to each
modality (In Fig 3). As the noise level increases, a clear performance decline is
observed in all models, emphasizing the challenges posed by data loss within a
single modality on the stability of multimodal representations. Despite this, our
method demonstrates exceptional robustness, particularly in scenarios with high
levels of noise, consistently outperforming the other models.
Inter-Modality completely missing. We evaluate our strategy by comparing
its performance with that of the other methods under OCT missing or Fundus
missing situations. Even a performance decline is observed across all models
when a modality is missing, our strategy demonstrates greater robustness. Re-
sult proves our strategy has robust ability to separate multimodal features and
reconstruct the missing information to serve for the grading task.
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Table 1: Our model is benchmarked against existing methods on the Harvard-
30k dataset across three conditions: OCT missing, Fundus missing, and complete
modality. The top-performing results are emphasized in bold and highlighted.

Method Dataset AMD DR Glaucoma

Modality OCT Fundus Both OCT Fundus Both OCT Fundus Both

ACC 65.07 72.92 70.87 70.53 73.81 74.07 65.69 73.02 73.35
Baseline AUC 69.88 75.38 81.06 69.94 79.11 78.73 69.86 75.35 74.53

F1 69.64 72.28 70.83 62.01 70.46 71.17 70.91 72.31 71.64

ACC 69.57 72.35 73.17 69.05 73.62 76.36 69.64 73.39 73.39
B-IF AUC 70.14 71.98 83.82 65.25 67.50 77.95 68.95 76.61 73.32

F1 67.45 70.03 71.25 67.93 69.68 75.61 67.18 72.47 72.11

ACC 68.97 73.24 74.93 67.20 73.04 75.21 67.70 72.78 74.98
M²LC AUC 72.23 72.67 82.39 65.05 67.89 79.68 71.22 70.23 76.45

F1 65.06 73.80 71.20 64.33 74.59 74.39 65.60 71.11 74.23

ACC 70.62 75.17 79.50 72.62 76.19 78.57 71.16 75.54 77.31
IMDR AUC 72.69 80.48 85.09 74.69 79.07 85.00 75.07 78.47 78.98

F1 71.90 76.59 72.52 72.90 72.18 77.04 70.37 75.12 78.90

ACC 71.79 76.69 81.42 74.38 77.50 79.50 72.53 76.28 78.55
Ours AUC 74.84 81.55 85.82 76.88 80.60 86.71 76.28 79.59 79.32

F1 72.94 76.79 78.93 74.28 76.71 79.81 72.54 76.62 80.54
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Fig. 3: A comprehensive evaluation of performance across different missing data
rates within the context of intra-modality incompleteness.

3.2 Ablation Study

Effectiveness of each component. To assess the effectiveness of EPRL and
DiLR, we conducted an ablation study on the Harvard-30k test set with Gaussian
noise (variance = 0.5), as shown in Table 2. From Variant I to II, adding EPRL
reduces task-irrelevant information and notably improves accuracy. From Vari-
ant I to III, DiLR enhances modality disentanglement, boosting accuracy by 5%.
Variant IV, integrating both modules, consistently outperforms II and III, high-
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Table 2: Baseline: Using transformer
backbone to extract two modality data
and simply concatenates their fea-
tures. EPRL: Our Essence-point Rep-
resentation Learning. DiLR: Our Dis-
entangling Learning Representations.
Variants Baseline EPRL DiLR ACC AUC F1

I ✓ 59.51 63.42 53.47
II ✓ ✓ 66.58 70.95 66.19
III ✓ ✓ 64.67 66.45 64.88
IV ✓ ✓ ✓ 69.37 66.39 57.94

Table 3: Implementation of a com-
prehensive hyperparameter sensitiv-
ity analysis within the full-modality
framework of the Harvard-30k dataset.
Percentage (p): the ratio of common
dimensions to total dimensionality.

(p) 0.3 0.4 0.5 0.6 0.7

AMD 79.56 81.42 79.05 80.23 73.47
DR 76.87 78.13 78.75 79.50 77.50

Glaucoma 77.32 78.55 77.44 76.35 77.50

(a) Baseline (b) w/ EPRL (c) w/ DiLR (d) EDRL (Ours)

high

low

Correlation Map

t-SNE Visualization

Glaucoma Non-Glaucoma

Fig. 4: Corrleation map and t-SNE on the Harvard-30k Glaucoma dataset. In
the ideal scenario, the top-left region of the heatmap should exhibit predomi-
nantly red areas, indicating a high correlation between F com

M1 and F com
M2 , while

the bottom-right region should show more blue areas, signifying lower correla-
tion between Funi

M1 and Funi
M2

.

lighting their complementary strengths in learning decoupled, low-redundancy
representations.
Qualitative Results. As shown in Fig. 4, we visualize correlation maps and
t-SNE plots for four variants to evaluate feature disentanglement and clustering.
The baseline (Fig. 4 (a)) shows weak decoupling and poor cluster separation.
Adding EPRL (Fig. 4 (b)) improves feature selection and cluster quality. Incor-
porating DiLR (Fig. 4 (c)) further disentangles modality-common and unique
features, enhancing separation. Our full EDRL model (Fig. 4 (d)) achieves clear
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modality disentanglement and distinct clusters, validating its effectiveness in
learning discriminative, modality-aware representations for grading.
Hyperparameter Sensitivity Analysis. To validate the robustness of our
model, we conduct a series of hyperparameter sensitivity analysis in Table 3.
In DiLR, the common dimension percentage affects performance: increasing it
initially improves results, but excessive sharing impairs modality-specific infor-
mation expression, causing performance decline.

4 Conclusion

In multimodal ophthalmology diagnosis, two main challenges are intra-modal
redundancy due to task-unrelated information and cross-modal entanglement
in the latent space. To tackle these, we propose the EPRL framework to reduce
redundancy, followed by the DiLR module for disentangling cross-modal features.
Extensive experiments on multimodal ophthalmic datasets show that our method
outperforms state-of-the-art approaches, improving interpretability.

Disclosure of Interests. The authors declare that they have no competing
interests.
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