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Abstract. The scarcity of high-quality, labelled retinal imaging data,
which presents a significant challenge in the development of machine
learning models for ophthalmology, hinders progress in the field. Exist-
ing methods for synthesising Colour Fundus Photographs (CFPs) largely
rely on predefined disease labels, which restricts their ability to gener-
ate images that reflect fine-grained anatomical variations, subtle disease
stages, and diverse pathological features beyond coarse class categories.
To overcome these challenges, we first introduce an innovative pipeline
that creates a large-scale, captioned retinal dataset comprising 1.4 million
entries, called RetinaLogos-1400k. Specifically, RetinaLogos-1400k uses
the visual language model (VLM) to describe retinal conditions and
key structures, such as optic disc configuration, vascular distribution,
nerve fibre layers, and pathological features. Building on this dataset,
we employ a novel three-step training framework, called RetinaLogos,
which enables fine-grained semantic control over retinal images and ac-
curately captures different stages of disease progression, subtle anatomi-
cal variations, and specific lesion types. Through extensive experiments,
our method demonstrates superior performance across multiple datasets,
with 62.07% of text-driven synthetic CFPs indistinguishable from real
ones by ophthalmologists. Moreover, the synthetic data improves accu-
racy by 5%-10% in diabetic retinopathy grading and glaucoma detection.
Codes are available at Link.
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Fig. 1. Class-Conditioned CFP Generation vs. Text-Driven CFP Generation.

1 Introduction

Eye healthcare has become a major global concern, as untreated ocular condi-
tions can severely impact an individual’s quality of life [4]. Many people have
difficulty accessing ophthalmic resources, particularly in resource-limited areas
[25]. To overcome the challenges posed by limited ophthalmic resources, early
detection of eye diseases is crucial, as it enables timely intervention and can
help prevent irreversible vision loss [14]. Among the available diagnostic tools,
non-invasive fundus imaging, particularly Color Fundus Photography (CFP), is
one of the most widely used and affordable methods in daily clinical practice.
Recent advancements in deep learning have significantly transformed the field,
enabling the automated analysis of CFP and offering great promise for the early
detection of common eye diseases [22,15]. Current deep-learning techniques rely
heavily on large-scale datasets to train various downstream models for CFP.
For instance, training foundational CFP models [31,5,24] that are competent in
zero-shot downstream tasks requires at least a million-level dataset to facilitate
model convergence. Despite these advancements, the scarcity of CFP, both in
quantity and quality, emphasizes the urgent need for more high-quality data in
this domain.

Generative models that synthesize data for training various downstream med-
ical tasks have shown significant success [2,18,11,28,10,17], and provide a feasi-
ble solution to address the issues of data scarcity. For instance, methods in
[29,30,20,19,13] used Generative Adversarial Networks conditioned on features
such as blood vessel structure, lesion region masks, and disease labels to generate
retinal images. A two-stage approach has also been adopted in [8,1], in which
the first stage generates realistic conditions, and the second stage generates
retinal images based on these conditions. However, current generative methods
[23,8] primarily rely on the conditions of predefined disease labels, which restrict
the generated images to broader categories with diverse anatomical structures.
As shown in Fig. 1, this limitation prevents the generation of CFP with more
fine-grained details—such as varying stages of retinal disease, subtle anatomical
variations, or specific lesion types.
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To address the above challenges, we first introduce a data collection pipeline
designed to amass a large-scale captioned caption dataset totalling 1.4 million
real CFPs paired with synthetic detailed captions, which are sourced from both
open-source and private datasets. Leveraging this extensive dataset, we then
propose RetinaLogos, a novel text-to-image framework for retinal image synthe-
sis. Specifically, using these extensive text-retinal image pairs, we then develop a
tailored text-to-image generator capable of not only synthesizing high-resolution
retinal images but also offering fine-grained control over specific anatomical
structures and disease progressions. Our method allows for the generation of
diverse, visually plausible synthetic CFP, where the appearance can be manip-
ulated through free-form descriptions and prompts.

In summary, our main contributions are as follows: a) We propose a compre-
hensive data collection pipeline, which assembles what is currently the largest
1.4 million captioned CFP dataset (1.4 million CFPs paired with synthetic
captions) to support advancements in text-driven retinal image synthesis. b) We
propose RetinaLogos, a novel text-to-image framework for retinal image genera-
tion. To the best of our knowledge, RetinaLogosis the first to explore large-scale
generation of CFPs from textual descriptions, supported by a dataset exceeding
one million CFPs-caption pairs. c) Our method achieves state-of-the-art perfor-
mance in text-driven CFP synthesis, demonstrating superior fidelity and clinical
relevance on the EyePACS, REFUGE, and IROGS datasets. This has been val-
idated through improved Frechet Inception Distance (FID) and Retina CLIP
scores, as well as through evaluations based on criteria defined by expert oph-
thalmologists.

2 Proposed Methodology

2.1 Retinal Captioning and Data Synthesis Pipeline

Authentic Image Quantity & Diversity. The scale and diversity of the
dataset are critical factors influencing the performance of generative models. We
constructed a comprehensive dataset of CFPs and corresponding captions, com-
prising over 1.4 million real-world fundus images sourced from both open-access
and private datasets. This dataset includes both images and their correspond-
ing Electronic Health Records (EHRs), as illustrated in Fig. 2(a). The fundus
images span a broad spectrum of retinal diseases, while the associated EHRs
provide essential information to provide grounded labels, including subclinical
disease labels, disease severity ratings, and the general health status of patients.
Additionally, the EHRs contain diagnostic reports contributed by healthcare
professionals.
Caption Generation & Reliability. As shown in Fig. 2(a), captions are
generated using a powerful VLM with the CFP and its corresponding EHR
as multimodal inputs. To be more specific, in our proposed data construction
pipeline, the VLM is prompted to function as a professional retinal imaging ex-
pert, denoted as model E , to generate detailed descriptions based on diagnostic
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Fig. 2. RetinaLogos architecture overview. (a) EHR text and CFP images
are integrated via a vision-language model for clinical caption generation. (b)
Multi-resolution CFP synthesis includes low-resolution generation, LLM-guided
data purification, and high-resolution fine-tuning. (c) Generated CFPs are tested
for authenticity, disease classification, and expert evaluation.

symptomatology extracted from EHR and the corresponding paired fundus im-
ages. Let {Ti}Ni=1 represent the EHR data and {Dl

i}Ni=1 denote the corresponding
paired fundus images. The captions generation process can be formally formu-
lated as follows:

Cl
i = E(Ti, D

l
i), i = 1, 2, . . . , N. (1)

Furthermore, to ensure that the captions align with clinical expectations, pro-
fessional ophthalmologists are involved in reviewing the generated annotations,
represented as paired text-to-image data {Dl

i, C
l
i}Ni=1.

2.2 Retinal Image Synthesis via Text-to-Image Generation
Framework

In this study, we trained a latent flow-matching DIT model inspired by [7], as our
retinal text-to-image generator. We employed the frozen Google Gemma 2B [26]
text decoder to obtain the word embeddings of the retinal image captions and
leveraged the flow matching mechanism to linearly interpolate between noise
and the clean sample. Mathematically, given an CFP sample x∗ ∼ pdata, an
associated caption ϕ, and ϵ ∼ N (0, I), the linear interpolation forward process
is formulated as xt = αtx

∗+βtϵ = tx∗+(1−t)ϵ, where t ∈ [0, 1]. Its corresponding
vector field is vt(xt) = x∗ − ϵ. During training, the model is optimized using the
following conditional flow-matching objective:

LCFM = Et∼U(0,1),x∗∼pdata,ϵ∼N (0,I)

[
∥vθ (xt, t, ϕ)− vt(xt)∥22

]
(2)

The training process consisted of three steps, as outlined in Fig.2(b).

Step I: Pretraining Stage. The pretraining stage initialised the model weights
using the checkpoint from [32] as a starting point, the warm-up approach reduced
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training time by closing the gap between the visual representations of natural
and retinal images. The primary objective of this stage was to effectively adapt
the model’s backbone for the retinal generation task. The model was pre-trained
on 1.4 million retinal images, where the corresponding annotated descriptions
are denoted as {Cl

i}Ni=1, at a low resolution of 256× 256, with the corresponding
images represented as {Dl

i}Ni=1.
Step II: Precision Filtering and Semantic Refinement. Ensuring data
quality is indispensable for training text-driven image generation models for
CFPs, we implement two strategies to further purify the datasets of image-text
pairs. Firstly, we employ the existing RetinClip encoders [24] to sift through
retinal images and caption annotations, filtering out pairs with CLIP similarity
scores below 0.6, an operation captured by:

{Dh
i , C

h
i }Ni=1 = {(Dl

i, R(Cl
i)) | S(Dl

i, C
l
i) ≥ 0.6 s.t. i ∈ {1, 2, 3..., N}}, (3)

where S(Dl
i, C

l
i) quantifies the semantic alignment between an image Dl

i and a
caption Cl

i , and R(Cl
i) denotes the refined caption. The dataset before filtering

and refinement is denoted as {Dh
i , C

h
i }Ni=1, which includes all collected pairs reti-

nal images Dl
i and captions Cl

i . After filtering, the resulting dataset {Dh
i , C

h
i }Ni=1

contains only the image-caption pairs with sufficient semantic alignment. Then,
we further refined the captions with the Qwen 2.5 LLM [27] using designed
medical prompts. The prompt is carefully tailored to eliminate unnecessary de-
scriptions prevalent in the retinal image content (such as recommendations to
avoid liability) while preserving the original meaning of the captions.
Step III: High-Resolution Supervised Fine-Tuning. The RetinaLogos was
fine-tuned on higher resolutions, reaching up to 1024×1024, using a dynamic
padding strategy from the Next-DIT architecture to enable training with diverse
aspect ratios. This allowed the second stage of supervised fine-tuning (SFT) to
achieve model convergence more efficiently, even with a relatively limited dataset
compared to the scale of natural images. This high-resolution training enhanced
image detail, allowing the model to capture finer retinal features.

2.3 Evaluation Standard for Generated Text-to-Retinal Images

As shown in Fig. 2(c), assessing the quality of synthesized retinal images derived
from the provided captions is key to their clinical relevance. We employ both
downstream task validation and expert evaluation by medical professionals. In
particular, in collaboration with ophthalmologists, we designed the first evalua-
tion principles based on five key anatomical structures—the optic disc, macula,
retinal vasculature, retinal nerve fibre layer, and pathological lesions—to mea-
sure the quality of CFPs generated through a text-driven synthesis approach.

3 Experiments and Discussion

3.1 Dataset and Training Details

Datasets. We evaluate the authenticity of generated CFP using three bench-
mark datasets: APTOS[12], EyePACs[9] and AIROGS[3]. Additionally, we assess
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Table 1. Quantitative Comparison of Synthetic CFP with Real CFP.
The FID and KID metrics assess the similarity between generated and real im-
ages, while the Inception Score (IS) measures the diversity of generated images. †

Results for Lumina-Next are based on weights pre-trained without medical reti-
nal image data. * EyePACs and AIROGS originate from the same institution.

Dataset FID↓ KID↓ Inception Score
APTOS EyePACs AIROGS APTOS EyePACs AIROGS

APTOS[12] - 52.931 42.904 - 0.0417 (0.0015) 0.0342 (0.0015) 1.969
EyePACs[9] 52.931 - *11.005 0.0417 (0.0016) - *0.0066 (0.0008) 2.132
AIRROGS[3] 42.905 *11.005 - 0.0342 (0.0015) *0.0066 (0.0008) - 1.993

Average 47.918 52.931 42.904 0.03795 0.0417 0.0342 2.031
MedFusion[16] 77.022 68.162 60.651 0.0871 (0.0016) 0.0748 (0.0013) 0.0716 (0.0015) 1.828
Lumina-Next†[32] 240.406 247.135 251.953 0.1800 (0.0024) 0.1830 (0.0023) 0.1938 (0.0026) 7.615

Ours 56.078 42.437 35.190 0.0369 (0.0012) 0.0230 (0.0008) 0.021 (0.0007) 1.864

Table 2. Performance of Diabetic Retinopathy Grading Classification
and Glaucoma Detection. Results for real and synthetic datasets using Reti-
naLogos, with the proposed synthetic CFP data (+ours). Metrics include Accu-
racy (Acc), F1-Score, and Quadratic Weighted Kappa (QWK).

Training Set Extra Data #Samples Eval Set Model Metrics

Acc F1-Score QWK

IDRiD-Train

N/A 413

IDRiD-Eval

ResNet-50 0.5436 0.4598 0.6223
N/A 413 ViT-B/16 0.4563 0.3589 0.3848
+ours 9837+413 ResNet-50 0.6375 0.5183 0.6868
+ours 9837+413 ViT-B/16 0.5533 0.5400 0.6213

REFUGE2-Train

N/A 640

REFUGE2-Test

ResNet-50 0.8562 0.7842 0.3935
N/A 640 ViT-B/16 0.9037 0.8615 0.6833
+ours 9117+640 ResNet-50 0.9375 0.8537 0.5505
+ours 9117+640 ViT-B/16 0.9762 0.9313 0.8627

the performance of our synthetic data in downstream classification tasks using
the IDRiD[21] and REFUGE2[6] datasets. These datasets contain 5,000, 35,126,
and 113,893 color fundus images, respectively. The IDRiD dataset includes 516
fundus images. The REFUGE2 dataset consists of 1,200 fundus images, of which
we selected 800 labelled images for use in our experiments.
Implementation Details. Our framework is implemented in PyTorch and
trained on 8 Nvidia RTX A100 GPUs, we trained RetinaLogos with total itera-
tions of 1M with the learning rate of 1× 10−5. For the authenticity evaluation,
we compared the generated CFPs with real CFPs from the existing open-sourced
datasets using metrics of FID, Kernel Inception Distance(KID), and Inception
Score(IS). To quantify the text-to-image alignment, we leveraged the existing
foundational CLIP-based method [24] to measure the caption-to-image simi-
larity score. In downstream classification tasks, we trained models on different
datasets for 100 epochs. ResNet-50 processed images at a resolution of 512×512
pixels, whereas ViT-B/16 operated on 224×224 pixels.
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Fig. 3. Visual Comparison of Generated CFPs under Different Stages,
Resolutions and Pathological Structures. (a) Disease Categories: Displays
different retinal disease types, including pathological myopia (PM), glaucoma
(GI), crystalline corneoretinal dystrophy (CCD), diabetic retinopathy (DR), and
macular hole (MH). (b) & (c) Diabetic Retinopathy (DR) Levels: Demonstrates
the progression of DR across severity levels (0–4). (d) Resolution Enhancement
up to 1024 progressively.

3.2 Experimental Results

Comparison Results on Authenticity and Classification Tasks. As shown
in Table 1, we compare our method with MedFusion[16] and Lumina-Next[32].
Our method achieves results closest to the real image benchmarks. Visual com-
parisons are presented in Fig. 3 (a), where CFPs for different eye diseases are
generated based on text descriptions. Fig. 3 (b) and (c) demonstrate the con-
trollable generation of Diabetic Retinopathy progression in the left and right
eyes under fixed random seeds, achieved by varying the descriptions of anatom-
ical and pathological symptoms. In downstream tasks, we focused on exploring
the classification performance of ophthalmological diseases using our augmented
training dataset with synthetic CFPs, as detailed in Table 2. Our augmented
training data consistently enhances disease classification performance regardless
of backbones, leading to an accuracy increase of 5 %–10%. Fig.3 (d) demonstrates
the ability of our RetinaLogos to scale up resolution levels, enabling high-quality
CFP generation.
Ablation Study. Table 4 summarizes five ablation settings. Exp I (PT ) serves
as the 256 × 256 baseline. Exp II introduces prolonged training (PL), but the
marginal improvement suggests that simply extending training does not signifi-
cantly enhance performance. Exp IV applies higher resolution (HR), indicating
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Table 3. Clinical Evaluation of Generated Colour Fundus Photographs
(CFPs). Authenticity is assessed based on the predictive outcomes for real and
synthetic CFPs, including those with no pathological symptoms. The expert
evaluation considers the clinical assessment based on clinician-proposed criteria.
Values in bold indicate superior performance. The scale of the expert evaluation
is scored from 0 to 3 to reflect the level of semantic resemblance between the
caption and the generated CFP.

Test Categories Evaluation Aspects Prediction Outcome

Real Image Synthetic Image

Authenticity Real Image 64.29% 35.71%
Synthetic Image 62.07% 37.98%

Retinal Evaluation

Optic Disc Structure and Position 2.11 2.41
Macular Structure and Position 2.10 2.45
Vascular Structure and Position 2.21 2.55
Retinal Nerve Fiber Layer Structure 2.46 2.41
Lesion Structure and Position 1.46 1.90
Overall CFP Image Quality 2.07 2.28

Average 2.06 2.33

Fig. 4. Comparison of ophthalmolo-
gists’ evaluation scores on individual
retinal disease criteria.

Table 4. Ablation Studies for Gen-
erators Configurations and Com-
ponents. Abbreviations: PT = Pre-
train, PL = Prolonged Training, HR =
High-Resolution, SR = Clip-Selection &
Caption Refinement.

Exp Components FID ↓ Clip Score ↑PT PL HR SR APTOS EyePACs AIROGS
O 240.406 247.135 251.953 0.5398
I ✓ 63.056 75.386 64.696 0.5485
II ✓ ✓ 72.389 71.766 63.866 0.5439
III ✓ ✓ ✓ 68.786 73.635 61.465 0.5730
IV ✓ ✓ ✓ 66.525 69.824 61.718 0.5396

V ✓ ✓ ✓ ✓ 56.078 42.437 35.190 0.6601

that scaling alone without data refinement offers limited benefit. Exp III in-
corporates the caption-refinement module (SR), highlighting the importance of
data quality. Finally, Exp V combines all components, achieving the best overall
performance.

Expert Evaluation. To evaluate the generator’s ability to produce clinically
relevant CFPs, we conducted authenticity tests by comparing the generated im-
ages with real ones and performed an expert evaluation focusing on five key
aspects. As shown in the Table. 3, 62.07% of the generated CFPs were classi-
fied as real, which indicates that the model is capable of producing high-quality
images that closely resemble real clinical data. Additionally, Fig. 4 presents an
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analysis of the evaluation scores for individual eye diseases based on the gener-
ated CFPs.

4 Conclusion

Our work presents RetinaLogos, a text-to-image framework that leverages large-
scale synthetic retinal caption datasets—comprising 1.4 million entries—to gen-
erate high-resolution, clinically relevant retinal images. This approach, which
transforms detailed text descriptions into visually rich images capturing key
retinal features, has been validated through extensive experiments. Although
the controlled generation of the pathological and anatomical structure still leaves
room for improvement, particularly in retinal diseases, it shows promising po-
tential to generate CFPs with fine-grained text descriptions in ophthalmology.
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