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Abstract. Pathology is essential for cancer diagnosis, with multiple in-
stance learning (MIL) widely used for whole slide image (WSI) analysis.
WSIs exhibit a natural hierarchy—patches, regions, and slides—with dis-
tinct semantic associations. While some methods attempt to leverage this
hierarchy for improved representation, they predominantly rely on Eu-
clidean embeddings, which struggle to fully capture semantic hierarchies.
To address this limitation, we propose HyperPath, a novel method that
integrates knowledge from textual descriptions to guide the modeling
of semantic hierarchies of WSIs in hyperbolic space, thereby enhancing
WSI classification. Our approach adapts both visual and textual features
extracted by pathology vision-language foundation models to the hyper-
bolic space. We design an Angular Modality Alignment Loss to ensure
robust cross-modal alignment, while a Semantic Hierarchy Consistency
Loss further refines feature hierarchies through entailment and contra-
diction relationships and thus enhance semantic coherence. The classifi-
cation is performed with geodesic distance, which measures the similarity
between entities in the hyperbolic semantic hierarchy. This eliminates the
need for linear classifiers and enables a geometry-aware approach to WSI
analysis. Extensive experiments show that our method achieves superior
performance across tasks compared to existing methods, highlighting the
potential of hyperbolic embeddings for WSI analysis. The source code is
available at https://github.com/HKU-MedAI/HyperPath.

Keywords: Hierarchical Representation Learning - Hyperbolic Space -
Vision-Language Model - Whole Slide Image.

1 Introduction

Pathology is the gold standard for cancer diagnosis, and whole slide image (WSI)
analysis is a key component of computational pathology, advancing cancer di-
agnosis and prognosis through machine learning [14]. However, due to the large
size and complex patterns of WSIs, pixel-level annotations are impractical. Mul-
tiple Instance Learning (MIL) [20] addresses this by operating on bags of image
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Fig. 1. Comparison of different representation learning approaches for WSI.

patches without exhaustive labeling, enabling slide-level representation learning
for downstream tasks. Some attention-based MIL methods [TTIT9I33] leverage ag-
gregation operators to combine patch-level information, providing interpretable
and effective representations. TransMIL [24] incorporates Transformers to ag-
gregate morphological and spatial features efficiently, while DTFD-MIL [32] in-
troduces pseudo-bags to address challenges posed by small sample sizes.

Despite these advantages, simple single-level feature aggregation often fails
to explicitly model the hierarchical structure of slides. Hierarchical modeling
is essential as it captures both local details and global context by represent-
ing complex relationships across hierarchical levels. To address this, methods
like [2I8ITI0] extract multi-scale features to model spatial hierarchies. However,
these may not fully preserve intrinsic semantic hierarchies. This limitation has
motivated exploration into hyperbolic modeling, a paradigm well-suited for hi-
erarchical structures. Recent studies [BII5I22I23I26/29/16] have demonstrated its
effectiveness, especially in capturing visual and textual hierarchical relationships.
In WSIs, hyperbolic modeling can organize levels (patch-region-slide) to align
with semantic and hierarchical structures, as more intuitively shown in Fig.

In this paper, we introduce HyperPath, a novel method that leverages tex-
tual concept knowledge to model hierarchical semantic relationships in WSIs
within hyperbolic space, improving classification performance. Building on the
success of foundation models in pathology [3I9TRI27I28|, we employ CONCH [18]
for feature extraction. Specifically, our framework encodes image patches and
class description prompts into hyperbolic space, where hierarchical aggregation
is performed to extract region- and slide-level features that reflect the intrinsic
structure of WSIs. By leveraging geodesic distances between slide representa-
tions and semantic class features, our method achieves robust WSI classification
without relying on linear classifiers. To enhance the semantic hierarchy in hyper-
bolic space, we propose two key loss functions: Angular Modality Alignment
Loss and Semantic Hierarchy Consistency Loss. The former minimizes
cross-modality discrepancies, ensuring effective and robust alignment across hi-
erarchical levels, while the latter enforces semantic coherence within and across
modalities, addressing contradictions and promoting entailments. Extensive ex-
periments on four TCGA tasks demonstrate the effectiveness of our approach
and its ability to learn semantic hierarchies in WSIs.
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Fig. 2. Overview of our proposed HyperPath framework. The WSI images are hierar-
chically aggregated, simultaneously optimized in hyperbolic space. Guided by semantic
class feature extracted from textual concepts, we utilize Angular Modality Alignment
Loss and Semantic Hierarchy Consistency Loss to learn semantic hierarchies in WSIs.

2 Methodology

2.1 Preliminaries

Hyperbolic Space. Hyperbolic geometry exhibits exponential space expansion,
allowing it to naturally represent hierarchical structures with efficient scaling, so
that it can embed complex relationships without excessive distortion [12125I31].
Following [5], we choose the Lorentz model to present the k-dimensional hyper-
bolic space with curvature —p, denoted by H’;, due to its numerical stability
and efficiency. It can be described by (k -+ 1)-dimensional Euclidean space R¥+!,
where for every vector u € R**!, the first dimension corresponds to the time
component u; € R, the remaining dimensions represent the space component
u, € RF, satisfying u; = \/1/p + |[us||2, where || - ||g is the Euclidean norm.
Let the Euclidean and Lorentzian inner product be denoted as (-, -)g and (-, )g
respectively, they satisfy the following equation (u,v)y = (us, vs)g — usve. Thus
the hyperbolic space can be defined as Hf = {u € R*! : (u,u)g = —1/p, p > 0}

and the induced Lorentzian norm can be expressed as ||ul|g = +/[{(u, u)n|-

Tangent Space. The tangent space is an orthogonal Euclidean space linked to
each point in hyperbolic space, allowing projections that preserve hyperbolic ge-
ometry. The origin O is commonly used as the reference due to its symmetry and
simplicity. The transformation 7g, _m(x) from tangent space Er, to hyperbolic

space H is given by xsinh(,/p||x|lz)/(\/p|x|[E)-
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2.2 Overview of HyperPath

As shown in Fig. 2] we transfer the latent knowledge from pathology Vision-
Language Models (VLMs) and adapt it to hyperbolic space, and hierarchically
aggregate features.

Specifically, the text encoder Fp extracts semantic features fg:h through
Fr([Pe,h, pc]) by combining concepts p, with learnable prompts p. 5. These fea-
tures are adapted to tangent space via Adaptorr (a trainable two-layer MLP),
producing fCT h, and further transformed into hyperbolic embeddings ZZ:h using
Te—m. For images, WSIs are divided into N, regions (4096 x 4096), each split
into N, patches (512 x 512). Features fzf from F; are mapped to fzf € Er, via
Adaptor; and embedded into zII, € H’,ﬁ resulting in patch-level features of shape
N, x N, x D.

Then, we design an aggregator AGG to integrate features fi, € RNn*Nn
from the hierarchical subordinate level h’' (patch/region) to generate rep-
resentations f] € R¥n*1xD for the current level h (region/slide). The process
uses learnable weights W, € RP/4xD 17, ¢ RP/4%1 and is defined as:

1 XD

fI % exp (WQT tanh(W1f;{Im)) fI ( )
= ) 1
I h’,m
o (0 w0

After that, the aggregated features are subsequently mapped to hyperbolic
space and optimized by the following Angular Modality Alignment Loss (Lapr4)
and Semantic Hierarchy Consistency Loss (Lsg¢). This process generates a more
informative slide-level representation for the final prediction.

2.3 Angular Modality Alignment Loss

Aligning hierarchical visual and textual embeddings in hyperbolic space is crucial
for cross-modal alignment, often achieved via contrastive learning methods like
InfoNCE [21]. However, existing methods using geodesic distances [5] struggle
with modality differences. Textual embeddings, which are more general, reside
closer to the origin and entail the broad scope of concepts, while visual em-
beddings grow farther as granularity increases (e.g., slides—regions—patches).
This leads to a mismatch: intra-modal geodesic distances differ in scale from
inter-modal ones, disrupting proper alignment.

To address this, we propose Angular Modality Alignment Loss L4, which
leverages angular distance instead of geodesic distance. This provides a softer
way to measure semantic similarity in hierarchical structures, enabling robust
cross-modal alignment despite hierarchical differences across modalities. To be
specific, we define exterior angle 0(u, v) as:

—1 Vi + utp<ua V>H
f(u,v) =71 — Z0uv = . 2
) (nusuE (p(u, v)e) — 1) 2
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Then, this exterior angle is used to compute the angle distance p(u,v) =
O(u,v)+0(v,u)—m. After that, we define the semantic similarity as ¢(u,v) =
e(vT,v™) — p(u,v), where vt and v~ are positive and negative hyperbolic
embeddings for query u. Through the defined semantic similarity, we aim to
push the query away from negative samples while pulling it closer to positive
ones, as shown in Fig. 2} To minimize angular distance for features of the same
category, the alignment loss is formulated as:

u VJr v )|=-—1lo eXp(@(u, V+)/T)
Lama[ul(v7,v7)] log exp(@(u, vh)/7) + 37, - exp(|p(u, v7)| /1)’ )

where 7 is the temperature. The absolute value of similarity between the query
and negative samples penalizes cases where the query deviates from both nega-
tive and positive samples (Fig. [2)), avoiding suboptimal convergence.

At each hierarchical level h, we apply a bidirectional alignment loss to visual
and textual embeddings to mitigate bias. In the absence of specific labels for
patches and regions, cosine similarity is computed using raw visual features
and class semantic features extracted via CONCH. The loss is applied to the
top-K most similar to their corresponding class semantics. Finally, the loss is

Lavia = Xy (Lomalzh (22 577 )]+ LamalzLs (2,27 ,)])-

2.4 Semantic Hierarchy Consistency Loss

Beyond cross-modal alignment, capturing hierarchical semantics within and across
modalities is crucial. Proper modeling ensures embeddings reflect structural de-

pendencies and fine-grained details for coherent, interpretable representations.

To achieve this, we introduce entailment cones in hyperbolic space to model par-

tial order relationships and reinforce hierarchical consistency. The half-aperture

is defined as ¢(u) = sin~" (2a/(\/pllus|g)), with a = 0.1 to set boundary con-

ditions near the origin [6]. Based on the definition, general concepts reside closer

to the origin with wider apertures, while specific concepts are farther away with

narrower apertures, reflecting their hierarchy in hyperbolic space.

To maintain semantic hierarchy consistency using entailment cones, we man-
age both intra-modal and inter-modal relations by explicitly addressing entail-
ment and contradiction. For semantic entailment, v is entailed if it lies within the
entailment cone of its hierarchical superordinate u. For semantic contradiction
where u shouldn’t entail v, we ensure v remains distant from the entailment cone
boundary of u, maintaining a clear separation between conflicting semantics and
strengthening hierarchical consistency. These losses are formulated as:

{ﬁent(u, v)=exp (0 (u,v) /¢ (u) — 1) -max (6 (u,v) — Bent - ¢ (u),0) 1)
Leon(u,v) =exp (¢ (u) /0 (u,v) — 1) - max (¢ (0) — Beon - 0 (u,v),0),

where the exponential function is employed to scale the penalty, 8 controls the
margin, facilitating effective hierarchical semantic distinction. The final losses

are defined as Lpnt = >, (Eent(z}{,zﬂ,) + ﬁem(zgh, ch,h’) + [th(zzﬂﬂh,z}{))
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and Lecon =Y, (Econ(zz,, . zﬂ)), which consist of intra- or inter-modal entail-

ments and contradictions across hierarchical levels. Consequently, the semantic
hierarchy consistency loss is given by Lsgc = LEnT + Loon-

2.5 Slide-level Prediction

Slide-level classification is performed by leveraging semantic hierarchies in hy-
perbolic space, removing the dependency on additional linear classifiers. This is
achieved using geodesic dg(u,v) = 1/1/pcosh™ ' (—p(u, v)g), which measures
distances between hyperbolic embeddings as curves. Let dg(z!, zCTi’S) denote the
geodesic distance between slide representation z! and class-specific semantics

z” _ in hyperbolic space. The classification loss Lo is defined as:

Ne I,T
eXp<_dG<Z57Zci,s))
ECLSZ—Zyz‘IOg (ZNC A (5)

i=1 j=1 eXp(_dG( s14cj,s

In summary, the overall loss is expressed as £ = Lors +AaLama+AsLsHC,
where \, and )\ balance the contributions of losses.

3 Experiment

3.1 Experimental Settings

Datasets and Evaluation Metrics. We evaluated HyperPath’s performance
on four TCGA [30] tasks: breast cancer (BRCA) and non-small cell lung can-
cer (NSCLC) subtyping, HER2 [I7] status prediction for breast cancer (BRCA
HER2), and EGFR [4] mutation prediction for lung adenocarcinoma (LUAD
EGFR). A nested splitting strategy was used: Nyyerr outer folds were generated
based on Tissue Source Site codes, with one fold as in-domain (IND) and the
rest as out-of-domain (OOD) from entirely different sites. Within each IND fold,
Ninner inner Monte Carlo cross-validation splits were performed, resulting in
Nouter X Nipner total folds. Performance was measured by mean and standard
deviation of AUC (A) and F1 score (F) across all folds. We set Nyyter = 3
and Njpner = 5 to ensure sufficient training samples due to limited EGFR data
sites. For other tasks, Noyter = 5 and Nyper = 3 were used for a robust and
comprehensive evaluation.

Implementation Details. Experiments were run on a single NVIDIA RTX
3090 GPU for 20 epochs using Adam optimizer [13] (Ir = 2 x 10~%). Key hyper-
parameters were set as follows: 7 = 0.05, 8 = 0.8, A, = 1, and A; = 10.

3.2 Experimental Results

Comparison Results. As shown in Table I HyperPath was compared with
state-of-the-art WSI analysis methods, including non-hierarchical (ABMIL [I1],
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Table 1. Performance evaluation for different tasks. (Best: Bold, Second: Underlined)

Method BRCA TYPE NSCLC TYPE
Aoop Foop Ainp Finp Aocop Foop Ainp Finp

ABMIL [L1] 0.898 0.653 0.922 0.690 0.940 0.866 0.978 0.917
£0.040 40.070 +£0.058 =£0.151 =+0.030 +£0.027 40.014 =+£0.032
CLAM-SB [19] 0.911 0.695 0.934 0.705 0947 0874 0977 0.913
£0.030 £0.061 +£0.041 =£0.104 =+0.017 =£0.023 =£0.014 +£0.017
TransMIL [24] 0.914 0.667 0.923 0.706 0.938 0.857 0.979 0.926
+0.027 =£0.046 +0.047 =£0.116 +£0.019 =+0.026 =£0.020 =+0.038
DTFD-MIL [32] 0.904 0.634 0916 0.676 0.947 0871 0.977 0.907
+0.019 +£0.031 =£0.056 =+0.130 =£0.025 =+0.031 =£0.016 =0.028
0.897 0.645 0.931 0.718 0.944 0.863 0977 0.925

ACMIL [33] £0.028 +0.065 +0.044 +0.098 +0.019 -+0.025 +0.014 +0.023
HIPT [2] 0.914 ~ 0.66I ~ 0.918 0.707 ~0.948 ~ 0.867  0.981 0.916
£0.022 +0.033 +0.049 +0.089 +0.017 +0.025 =+0.016 =+0.031
HIT [10] 0.922 0.679 0.920 0.705 0.938 0.864 0.982 0.933
£0.015 +0.059 +0.055 =+0.136 +0.021 +0.030 +0.020 +0.034

HvperPath 0.933 0.696 0.934 0.750 0.957 0.883 0.984 0.938
yp +0.017 +0.060 =£0.046 =+0.086 =£0.014 =+0.017 =+£0.011 =0.026

Method BRCA HER2 LUAD EGFR
Aoop Foop Ainp Finp Aocop Foop Ainp FinD

ABMIL [11] 0.660 0.184 0.681 0.210 0.611 0.308 0.595 0.315
£0.049 +0.070 +0.157 +0.200 +0.039 +0.088 +0.107 +0.107

CLAM-SB 119] 0.677 0.194 0.688 0.229 0.612 0.323 0.628 0.320
£0.062 +0.051 +0.157 +0.192 +0.045 +0.091 +0.130 +0.187

TransMIL 124] 0.734 0.192 0.700 0.152 0.626 0.294 0.619 0.306
0019 £0.085 0160 +0163 £0035 £0.101 H0.110 40161

o 0712 0232 0719  0.218  0.573  0.290 0.626  0.310

DTFD-MIL [32] {0060 10.052 +0.138 40.136 £0.057 40.123 +0.113 40.146
0.716 0.204 0.709 0.226 0.612 0.322 0.617 0.328

ACMIL [33] £0.043 +0.057 +0.160 +0.163 +0.045 +0.117 +0.132 +0.173
HIPT [2] 0.732° ~0.229 ~ 0.720 0.238 T 0.599 T 0.343° 0.630 0.358
£0.055 +0.060 +0.145 +0.168 +0.036 +0.101 +0.127 =+0.149
HIT [10] 0.740 0.075 0.740 0.093 0.638 0.237 0.647 0.256
£0.057 +0.079 +£0.144 +0.178 +0.037 +0.079 +0.111 +0.224

HvperPath 0.752 0.260 0.732 0.274 0.637 0.378 0.638 0.343
yp +0.050 =£0.086 +£0.157 =£0.180 +£0.044 =+0.093 =£0.107 =+£0.120

CLAM-SB [19], TransMIL [24], DTFD-MIL [32], ACMIL [33]) and hierarchical
approaches (HIT [10], HIPT [2]). All methods used CONCH [I§] for feature
extraction to ensure fair comparison. Notably, HyperPath achieves significant
gains in both AUC and F1 Score across all tasks. In the OOD setting, it outper-
forms others by 1.9%-9.2% in AUC and 2.6%-8.8% in F1 Score (excluding HIT’s
outlier). Similarly, in the IND setting, it shows improvements of 0.7%—5.1% in
AUC and 3.1%-12.2% in F1 Score. This consistent performance highlights its
robustness with minimal variation between IND and OOD scenarios, except for
a slight drop in Fyyp on LUAD EGFR, likely due to small sample size and class
imbalance. While HIT achieves high AUC in BRCA HER2 and LUAD EGFR,
its low F'1 score indicates a bias toward certain classes, reflecting overfitting
and instability. In contrast, HyperPath delivers balanced and reliable results,
excelling in both metrics and demonstrating its superiority across diverse tasks.
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Table 2. Ablation study of HyperPath.

HyperPath BRCA NSCLC

Lama Lsuc Aoop Foop Ainp Finp Aoop Foop Ainp  FIND

0.864 0.532 0.893 0.564 0.849 0.814 0.914 0.887

+0.032 +£0.151 £0.055 +£0.199 £0.120 =+£0.073 £0.106 +0.081

v 0.925 0.634 0.928 0.656 0.947 0.832 0.975 0.889
+0.016 +£0.107 =£0.046 +£0.150 =£0.021 +0.114 =£0.024 =+0.121

v 0.539 0.156 0.558 0.153 0.499 0.302 0.507 0.331
+0.105 +£0.141 £0.123 +£0.139 £0.099 +0.326 £0.156 =+0.331

v v 0.933 0.696 0.934 0.750 0.957 0.883 0.984 0.938
+0.017 +£0.060 £0.046 +0.086 +0.014 +0.017 £0.011 +0.026
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LUSC-Patch-Image LUAD-Patch-Image
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LUSC-Patch-Text LUAD-Patch-Text

LUSC-Region-Text © LUAD-Region-Text

® LUSC-Slide-Text ® LUAD-Slide-Text

Fig. 3. The visualization of hyperbolic embeddings from different hierarchical levels.
It is observed that the embeddings are well-structured in hyperbolic space.

Ablation Analysis. We conduct ablation studies to evaluate the effectiveness
of Lana and Lsge as shown in Tab. 2| Using L4374 alone improves perfor-
mance by aligning hyperbolic visual features with class semantics, while Lggc
alone degrades performance due to neglecting visual-textual alignment, leading
to scattered feature distributions. Combining both losses achieves optimal re-
sults, as Lapr4 ensures precise visual-semantic alignment and Lgsgc enhances
semantic hierarchies, promoting intra-semantic alignment, inter-semantic separa-
tion, and ultimately boosting classification performance through jointly learned
multi-modal hyperbolic features with the consistent semantic hierarchy.

Hyperbolic Embedding Visualization. Fig. [3| visualizes hyperbolic embed-
dings using dimensionality reduction methods CO-SNE [7] and HoroPCA [I]
designed for hyperbolic space. Using NSCLC subtyping task as an example, we
display features across modalities, categories, and hierarchical levels. The visu-
alization reveals a clear hierarchical structure: class semantic features cluster
near the origin, surrounded by slide-, region-, and patch-level features in or-
der. Distinct category boundaries confirm that our method effectively aligns and
distributes multimodal features in hyperbolic space. Such hierarchical represen-
tations can further enhance WSI classification performance.
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4 Conclusion

In this paper, we introduce HyperPath, a novel approach that leverages hy-
perbolic space to learn hierarchical representations of WSIs. HyperPath aggre-
gates patch-level features from a pathology vision-language foundation model
into region- and slide-level representations. Through angular modality alignment
loss, semantically similar features are brought closer in hyperbolic space, while
a semantic hierarchy consistency loss enhances inter- and intra-modality rela-
tionships, yielding meaningful hierarchies. Experiments demonstrate that Hy-
perPath surpasses existing methods across multiple tasks, showing the potential
of hyperbolic space as a powerful alternative for modeling complex WSIs.
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