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Abstract. Anatomical trees are critical for clinical diagnosis and treat-
ment planning, yet their complex and diverse geometry make accurate
representation a significant challenge. Motivated by the latest advances
in large language models, we introduce an autoregressive method for
synthesizing anatomical trees. Our approach first embeds vessel struc-
tures into a learned discrete vocabulary using a VQ-VAE architecture,
then models their generation autoregressively with a GPT-2 model. This
method effectively captures intricate geometries and branching patterns,
enabling realistic vascular tree synthesis. Comprehensive qualitative and
quantitative evaluations reveal that our technique achieves high-fidelity
tree reconstruction with compact discrete representations. Moreover, our
B-spline representation of vessel cross-sections preserves critical morpho-
logical details that are often overlooked in previous’ methods parameter-
izations. To the best of our knowledge, this work is the first to gen-
erate blood vessels in an autoregressive manner. Code is available at
https://github.com/LIA-DiTella/VesselGPT-MICCAI.

Keywords: Vascular 3D model · Generative modeling · Neural Net-
works.

1 Introduction

Realistic 3D models of blood vessels are crucial for a number of medical applica-
tions ranging from diagnosis to surgical intervention. Accurate representations
of hierarchical systems like blood vessels, renal tubules, and airways enable criti-
cal applications, including disease diagnosis [24], prognosis [20], and intervention
simulation [16]. Additionally, they play a key role in surgical planning [15] and
fluid dynamics simulations [30]. Beyond the medical domain, the ability to model
complex branching structures extends to fields such as computer graphics, where
applications include procedural generation of vegetation [17, 7].

The choice of data representation for 3D vascular structures depends on the
downstream task. However, obtaining high-fidelity reconstructions from patient
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scans is challenging, requiring expert knowledge and often leading to errors [13,
19]. Despite advances in vessel segmentation, accurately capturing fine vascular
details remains difficult [1]. To address these limitations, various methods have
been developed for synthesizing blood vessel geometries [34]. Furthermore, gen-
erative models provide a promising avenue for augmenting datasets, particularly
for rare anatomical and pathological variations [4]. We identified two main ap-
proaches in the literature on generating vascular 3D models: model-based and
data-driven. Model-based methods are fractal or space-filling algorithms using
a set of fixed rules that include different branching parameters, generally ad-
hering to hemodynamic laws with constraints related to flow and radius [11,
29, 25, 23]. These methods often fail to capture the complexity and diversity of
real anatomical data. Data-driven methods model the data distribution without
the need for hard-coded rules. The first method in this line was proposed by
Wolterink et al. [33], who employed Generative Adversarial Networks restricted
to single-channel vessels. Subsequently, Sinha et al. [27] introduced a diffusion
model to learn vessel tree distributions using signed distance functions (SDFs).
Deo et al. [8] extended these ideas by leveraging latent diffusion models for
aneurysm segmentation generation. Kuipers et al. [12] adopted a diffusion-based
approach to generate vessel point clouds but required a post-processing step to
reconstruct the centerlines. Prabhakar et al. [21] proposed a novel graph-based
diffusion model capable of handling cycles, though it primarily targets capillary
networks and focuses on generating the vessel topology rather than a 3D mesh.

VesselVAE [9], which is conceptually closer to our approach, introduced a
recursive variational neural network (RvNN) tailored for vascular geometry gen-
eration. However, like other parameterized methods, it represents vessels solely
by their centerlines and radii. While this compact representation is widely used,
it oversimplifies the vessel’s cross-sectional geometry, potentially leading to in-
accuracies in simulations based on such data [10]. Our data exploration revealed
that vessel cross-sections are far from being circular, confirming the need for
a non circular parametrization. Moreover, the method is limited to relatively
small vascular segments, a constraint that arises from the difficulty the RvNN
architecture faces when scaling to deeper levels of recursion.

In light of these limitations, we propose a novel Transformer-based [32] ap-
proach for blood vessel synthesis. Although transformers have shown remarkable
versatility in modeling sequential data, including geometric structures [26, 28],
their application to vascular generation remains largely unexplored. In this work
we present a formulation that treats vascular trees as a sequence of nodes, lever-
aging the GPT-2 architecture to generate compact, anatomically realistic vessel
structures. Additionally, we propose using a cross-sectional representation of
the vessels’ channels based on B-splines. This approach allows a more nuanced
surface model compared to methods that rely solely on a single radius value,
overcoming a key limitation in previous techniques. Our approach proceeds in
two stages. First, we use a vector-quantized autoencoder (VQ-VAE) [31] to learn
a discrete vocabulary of node attributes, capturing essential geometric features
in context. We then employ this learned codebook to train a GPT-2 model [22],
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Fig. 1. VesselGPT overview. (a) We begin by reparametrizing the blood vessel meshes
by computing their centerlines and fitting B-splines to the cross-sections. We store all
parameters in a binary tree, where each node represents a centerline sample along with
the corresponding weights of its cross-section spline. (b) We flatten the tree using pre-
order traversal, then feed the resulting sequence into a Vector Quantized Variational
Autoencoder (VQ-VAE). The encoder maps it to a discrete latent space, and the de-
coder learns to reconstruct the original sequence from the quantized embeddings. (c)
We train a GPT model on the codebook index sequences (tokens) that the pretrained
VQ-VAE encoder generates for each dataset sample. During inference, the autoregres-
sive model generates token sequences, which are decoded back to the serialized tree data
structed by means of the VQ-VAE decoder. Finally, a meshing algorithm reconstructs
the vessel geometry from its parameterized representation.

enabling the autoregressive generation of 3D blood vessel structures. Finally, we
show experiments comparing our method with baseline techniques, validating
the effectiveness of our approach.

2 Methods

We propose a sequence-based approach for autoregressively generating blood
vessel trees as sequences of nodes (Figure 1). The proposed method consists of
two main stages:

1. A Vector-Quantized Variational Autoencoder (VQ-VAE) trained to learn a
discrete vocabulary of tokenized node embeddings.

2. A transformer model trained for vessel tree generation by performing au-
toregressive next-node prediction over the learned vocabulary of tokens.
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2.1 Codebook learning

Autoregressive generative models produce token sequences by conditioning each
new token on those previously produced. In order to tokenize blood vessel struc-
tures, we first convert them into a sequential representation. Specifically, we
model each vessel as a binary tree and serialize it using a preorder traversal,
resulting in an ordered vector of node attributes—including coordinates, spline
coefficients, and control points. Moreover, we define a special zero attribute vector
for absent child nodes, ensuring that the original tree structure can be accurately
reconstructed from this serialized representation during decoding.

Using the coordinates and spline coefficients directly as tokens for autore-
gressive generation is not optimal, mainly because it fails to effectively cap-
ture geometric patterns. This is because such a representation lacks information
about neighboring vessel nodes and does not incorporate any priors from the
distribution of vascular structures. To address this challenge, we propose to
learn a quantized embedding from a collection of vessel trees. The task formu-
lation is specified as follows: Let V1:T = (v1, . . . , vT ) represent a sequence of
ground-truth blood vessel nodes, where each node vt ∈ Rm is associated with an
m-dimensional attribute vector that includes its spatial coordinates x, y, z along
with the coefficients and control points defining the spline. The goal of this task
is to sequentially predict the synthesized blood vessel nodes V̂1:T , approximating
the original sequence V1:T .

To construct the node vocabulary, we employ a vector-quantized autoen-
coder (VQ-VAE) [31], which consists of an encoder (Ev), a decoder (Dv), and
a discrete codebook Z = {zk}Kk=1, where zk ∈ Rdz , and dZ is the dimension of
the codebook vectors. The VQ-VAE is trained to self-reconstruct realistic vessel
trees. Specifically, given vessel tree data in the continuous domain V1:T , the VQ-
VAE encoder (Ev), which incorporates a transformer layer [32], first encodes the
continuous sequence of vessel nodes into latent features Ẑ ∈ RT×dz . These latent
features Ẑ are then quantized to Zq via an element-wise quantization function
Qv, which maps each feature vector to its closest entry in the codebook:

Zq = Qv(Ẑ) := arg min
zk∈Z

∥ẑt − zk∥2 ∀t ∈ [1, T ]. (1)

The quantized representation Zq is subsequently reconstructed into continuous
vessel tree representations V̂1:T by the VQ-VAE decoder (Dv), which has a sym-
metric architecture to the encoder. The VQ-VAE model is trained using the
following objective function:

LVQ = ∥V1:T − V̂1:T ∥1 + ∥sg(Ẑ)− Zq∥22 + λ∥Ẑ − sg(Zq)∥22, (2)

where the first term enforces reconstruction consistency, the second and third
terms update the codebook via the stop-gradient operator sg [3], and λ is a
weighting factor.



VesselGPT: Autoregressive Modeling of Vascular Geometry 5

2.2 Autoregressive vessel sequence prediction

The second component in our model is a GPT-style decoder-only transformer
that takes advantage of quantized embedding from the previous stage. Given a
sequence of tokens computed from the nodes of a vessel tree, the transformer is
trained to predict the codebook index of the next embedding in the sequence.
Once trained, the transformer can be auto-regressively sampled to predict se-
quences of embeddings. These tokens can then be decoded into the tree geometry
of novel vessel trees.
The input of the transformer consists of the codebook indices of the embeddings
e(Zq), obtained by encoding the input sequence using the frozen encoder of stage
1. The list of codebook indices is prefixed and suffixed with predefined start and
end tokens. The features then pass through a stack of multi-headed self-attention
layers, where the transformer is trained to predict the next quantized codebook
entry in the sequence. Specifically, we maximize the log probability of the train-
ing sequences with respect to the transformer parameters θ:

T∏
t=1

p(et | e<t; θ), (3)

where et represents the codebook index corresponding to the vessel node at
step t, and e<t denotes the sequence of tokens up to step t− 1.

Once trained, the transformer can autoregressively generate a sequence of
tokens; starting with a learned start token and continuing until a stop token is
reached using beam sampling. The codebook embeddings indexed by the gener-
ated token sequence are then decoded by Dv to reconstruct the structure of the
vessel.

2.3 3D mesh synthesis.

To reconstruct a 3D mesh representation of a blood vessel from a set of splines,
we employ a three-step approach that involves centerline fitting, signed distance
field (SDF) generation, and surface extraction through marching cubes. First,
we fit a B-spline to each branch of the centerline and obtain a smooth parametric
representation. Next, we construct a signed distance field (SDF) that encapsu-
lates the vessel’s shape. The cross-sectional geometry of the vessel is charac-
terized by a set of B-splines defining the radius at different points along the
centerline. The SDF is then built by interpolating these cross-sectional shapes
along the vessel’s trajectory, yielding a continuous representation of the vessel.
Finally, we apply the marching cubes algorithm [18] to the generated SDF and
obtain a triangulated surface mesh.



6 Paula Feldman et al.

3 Experimental Setup

Materials. Our model was trained on the publicly available Aneurisk dataset4 [2].
This dataset comprises 100 vessel segments reconstructed from 3D angiographic
images, representing both healthy vasculature and aneurysms. We transformed
the 3D meshes into binary tree representations, and obtained the vessel center-
line with the network extraction script from the VMTK toolkit5 . The centerline
points are obtained by calculating the ratio of the sphere step to the local maxi-
mum radius, using a user-defined advancement ratio. For each sample along the
centerline, the contour of the blood vessel conduit was delineated by fitting a
B-spline to the surface points located on the plane perpendicular to the center-
line. Data augmentation was performed by resampling the trees at various rates
and applying random rotations to the entire tree. Additionally, non-binary trees
were converted to binary form, and any trees containing loops were excluded.
This procedure ultimately yielded 528 binary trees from the original 3D meshes.

To serialize a binary tree, we traverse it in preorder and store each node’s
attributes sequentially. The tree can be incomplete, meaning that some nodes
have fewer than two children or none. To preserve the structure during deseri-
alization, we insert zero vectors in place of these non-existing children, ensuring
that the hierarchy can be accurately reconstructed. However, since the VQ-VAE
learns an optimal representation for each tree based on the entire dataset, these
zero vectors are often mapped to different token sequences. As a result, after
reconstructing the unquantized tree from the decoder, threshold values lower
than 10−2 to zero to ensure non-existing nodes are accurately predicted.

Implementation details. For extracting the centerline, we configured the
VMTK script with an advancement ratio of 1.05. The script generates several
cross-sectional views at bifurcation points; in these instances, we opted for the
cross-section with the smallest area to ensure it aligns correctly with the principal
direction of the centerline. All attributes were normalized to the range [−1, 1],
and the root node of each tree was positioned at the origin.

Training. For Stage 1, we defined the codebook vector dimension as 64 and
utilized 16 tokens per tree node. The batch size was set to 1, and we applied the
ADAM optimizer with hyperparameters β1 = 0.9, β2 = 0.999, and a learning
rate of 1 × 10−4. Training the model on a single NVIDIA RTX A4500 requires
approximately 3 hours. For Stage 2, we maintained the same hyperparameters,
learning rate, and optimizer. Training time for this stage is approximately 24
hours.

Metrics. We benchmarked our method with state-of-the-art approaches us-
ing established metrics for assessment, consistent with previous works [35, 26,
27]: We use Minimum Matching Distance (MMD) to evaluate quality, Cover-
age (COV) to measure diversity, and 1-Nearest Neighbor Accuracy (1-NNA) to
assess plausibility. To compute these point-based metrics, we randomly sample
1000 points from all baseline generated meshes.

4 https://github.com/permfl/AneuriskData
5 http://www.vmtk.org/vmtkscripts/vmtknetworkextraction
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Fig. 2. Comparison of vessel geometries generated by VesselGPT (Ours) and baseline
methods trained on the Aneurisk dataset. Sinha et al. [27] produce valid vessels but
lack diversity, resulting in simpler, shallower structures. Feldman et al. [9] performs
well up to height 15 but struggles with deeper trees. In contrast, our method generates
more diverse and realistic vessel meshes.

To further assess the quality of our generated samples, we compared their
distribution to that of the training dataset using vessel-specific metrics. These
metrics are well-established in 3D blood vessel modeling and have shown to ef-
fectively capture key vascular properties [5, 14, 9, 27]. Specifically, we evaluated
branch-wise tortuosity and total vessel centerline length. Tortuosity, measured
using the distance metric [6], is particularly relevant due to its clinical signifi-
cance, as it quantifies the twisting complexity of individual vessel branches. Total
vessel length, on the other hand, has been widely used to distinguish between
healthy and pathological vasculature. Finally, to assess how closely the generated
vessel structures align with real ones, we quantify the similarity between their
distributions using cosine similarity.

4 Results

We compare our method to leading vasculature generation approaches. Sinha et
al. [27] uses diffusion over the space of INRs, focusing primarily on representation
rather than the generation of novel structures. Feldman et al. [9] employs a
recursive approach to generate vessel sequences but faces limitations with deeper



8 Paula Feldman et al.

trees and simplifies radius parametrization to a single value per centerline point,
loosing fine details. The results are presented in Tab. 1. Both our model and the
baselines were trained with two different datasets: the Aneurisk trees trimmed at
height 15 and 20. For the MMD metric, while a low value indicates resemblance,
an extremely small value may suggest memorization. Our model outperforms the
method by [27] in both COV and 1-NNA. Although VesselVAE achieves a higher
COV score, qualitative evaluation highlights its difficulties with deeper trees and
its tendency to oversimplify vessel radii using circular cross-sections, preventing
it from capturing fine details. While these metrics are commonly used in the
literature, they fail to capture key characteristics of the data. Our approach offers
distinct advantages despite metric limitations: it is more efficient in training time,
scales to larger and deeper vascular trees, and enables the representation of more
complex anatomical features by modeling non-circular cross-sections (allowing
for aneurysm modelling), an aspect not reflected by standard metrics but vital
for downstream applications. Furthermore, Fig. 2 provides example renders for
all methods and training datasets, complementing the quantitative analysis.

Table 1. Quantitative results for novel tree generation comparing our method against
baseline approaches. ↑ indicates that higher values are better, ↓ indicates that lower
values are better, and for 1-NNA, the optimal score is 0.5.

Aneurisk Height 15 Aneurisk Height 20

MMD ↓ COV ↑ 1-NNA MMD ↓ COV ↑ 1-NNA

Sinha et al.[27] 0.43 0.103 0. 0.418 0.104 0.
Feldman et al.[9] 0.014 0.49 0.238 .013 0.45 0.126
Ours 0.14 0.31 0.097 0.14 0.41 0.17

For the metric characterization analysis, we utilized state-of-the-art vascular
metrics to assess the generated blood vessels. We computed histograms of total
length, and tortuosity for both the real and generated vessel sets. To quantify
the similarity between these distributions, we used cosine similarity. Given that
all values are positive, cosine similarity ranges from 0 to 1. Our analysis yielded
a total length similarity of 0.88 and a tortuosity similarity of 0.97 for trees of
height 20, while for trees of height 15, these values were 0.87 and 0.96, respec-
tively. These results indicate a strong agreement between the real and generated
distributions, demonstrating the realism of our synthesized vessels. The slightly
lower length similarity is due to some model-generated samples containing only
a few tokens, this only occurs in less than 5% of the generated samples.

5 Conclusions

We introduce VesselGPT, a novel method for generating blood vessels in an
autoregressive manner by sequentially sampling from a learned codebook. Our
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method is capable of learning a discrete representation of blood vessels in an
embedding space, that allows synthesizing high quality novel structures. We ad-
vance the state of the art by introducing a more compact yet expressive repre-
sentation of vessel geometry, using B-splines to model the cross-sectional shape.
Additional metrics could be introduced in future work to better assess the im-
pact of this representation and provide a more comprehensive evaluation of the
quality of the generated structures. Assessing how well the synthesized vascu-
lature performs in practical applications would provide deeper insights into its
clinical and scientific relevance. Furthermore, integrating domain-specific con-
straints or leveraging physics-informed models could enhance the and realism
of the generated structures in real-world scenarios. Our approach demonstrates
promising advancements in 3D blood vessel geometry synthesis, paving the way
for enhanced clinical applications that could assist healthcare professionals in
diagnosis, treatment planning, and surgical interventions.

Acknowledgments. This project was supported by Universidad Torcuato Di Tella,
Argentina and the National Scientific and Technical Research Council (CONICET),
Argentina.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Alblas, D., Brune, C., Wolterink, J.M.: Deep-learning-based carotid artery vessel
wall segmentation in black-blood mri using anatomical priors. In: Medical Imaging
2022: Image Processing. vol. 12032, pp. 237–244. SPIE (2022)

2. Aneurisk-Team: Aneuriskweb project. Web Site (2012)
3. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradi-

ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013)

4. van Breugel, B., Liu, T., Oglic, D., van der Schaar, M.: Synthetic data in
biomedicine via generative artificial intelligence. Nature Reviews Bioengineering
pp. 1–14 (2024)

5. Bullitt, E., Gerig, G., Aylward, S., Joshi, S., Smith, K., Ewend, M., Lin, W.:
Vascular attributes and malignant brain tumors. In: Proc. Med. Image Comput.
Comput.-Assist. Interv. (MICCAI). pp. 671–679. Springer (2003)

6. Bullitt, E., Gerig, G., Pizer, S.M., Lin, W., Aylward, S.R.: Measuring tortuosity
of the intracerebral vasculature from mra images. IEEE transactions on medical
imaging 22(9), 1163–1171 (2003)

7. Cuntz, H., Forstner, F., Borst, A., Häusser, M.: One rule to grow them all: a general
theory of neuronal branching and its practical application. PLoS computational
biology 6(8), e1000877 (2010)

8. Deo, Y., Lin, F., Dou, H., Cheng, N., Ravikumar, N., Frangi, A., Lassila, T.: Few-
shot learning in diffusion models for generating cerebral aneurysm geometries. In:
Lecture Notes in Computer Science. Springer Nature (2024)



10 Paula Feldman et al.

9. Feldman, P., Fainstein, M., Siless, V., Delrieux, C., Iarussi, E.: Vesselvae: Recur-
sive variational autoencoders for 3d blood vessel synthesis. In: International Con-
ference on Medical Image Computing and Computer-Assisted Intervention. pp.
67–76. Springer (2023)

10. Ferrero-Aprato, C.: Impact of circular cross-section idealization in image-based
computational hemodynamic models of coronary arteries. Ph.D. thesis, Politecnico
di Torino (2019)

11. Hamarneh, G., Jassi, P.: Vascusynth: Simulating vascular trees for generating vol-
umetric image data with ground-truth segmentation and tree analysis. Computer-
ized medical imaging and graphics 34(8), 605–616 (2010)

12. Kuipers, T.P., Konduri, P.R., Marquering, H., Bekkers, E.J.: Generating cerebral
vessel trees of acute ischemic stroke patients using conditional set-diffusion. In:
Medical Imaging with Deep Learning (2024)

13. Lan, H., Updegrove, A., Wilson, N.M., Maher, G.D., Shadden, S.C., Marsden, A.L.:
A re-engineered software interface and workflow for the open-source simvascular
cardiovascular modeling package. J. Biomech. Eng. 140(2), 024501 (2018)

14. Lang, S., Müller, B., Dominietto, M.D., Cattin, P.C., Zanette, I., Weitkamp, T.,
Hieber, S.E.: Three-dimensional quantification of capillary networks in healthy and
cancerous tissues of two mice. Microvascular research 84(3), 314–322 (2012)

15. Lawaetz, J., Kristensen, J.S.S., Nayahangan, L.J., Van Herzeele, I., Konge, L.,
Eiberg, J.P.: Simulation based training and assessment in open vascular surgery:
a systematic review. Eur. J. Vasc. Endovasc. Surg. 61(3), 502–509 (2021)

16. Le Bras, A., Boustia, F., Janot, K., Le Pabic, E., Ouvrard, M., Fougerou-Leurent,
C., Ferre, J.C., Gauvrit, J.Y., Eugene, F.: Rehearsals using patient-specific 3d-
printed aneurysm models for simulation of endovascular embolization of complex
intracranial aneurysms: 3d sim study. Journal of Neuroradiology (2023)

17. Lee, J.J., Li, B., Benes, B.: Latent l-systems: Transformer-based tree generator.
ACM Transactions on Graphics 43(1), 1–16 (2023)

18. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. In: Seminal graphics: pioneering efforts that shaped the field,
pp. 347–353 (1998)

19. Mou, L., Lin, J., Zhao, Y., Liu, Y., Ma, S., Zhang, J., Lv, W., Zhou, T., Frangi,
A.F., Zhao, Y.: Costa: A multi-center multi-vendor tof-mra dataset and a novel
cerebrovascular segmentation network. IEEE Trans. Med. Imaging (2024)

20. Murthy, V.L., Naya, M., Foster, C.R., Hainer, J., Gaber, M., Dorbala, S., Charytan,
D.M., Blankstein, R., Di Carli, M.F.: Coronary vascular dysfunction and prognosis
in patients with chronic kidney disease. JACC Cardiovasc. Imaging 5(10) (2012)

21. Prabhakar, C., Shit, S., Musio, F., Yang, K., Amiranashvili, T., Paetzold, J.C.,
Li, H.B., Menze, B.: 3d vessel graph generation using denoising diffusion. arXiv
preprint arXiv:2407.05842 (2024)

22. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

23. Rauch, N., Harders, M.: Interactive Synthesis of 3D Geometries of Blood Vessels.
In: Theisel, H., Wimmer, M. (eds.) Eurographics 2021 - Short Papers. The Euro-
graphics Association (2021)

24. Roman, M.J., Kizer, J.R., Best, L.G., Lee, E.T., Howard, B.V., Shara, N.M., Dev-
ereux, R.B.: Vascular biomarkers in the prediction of clinical cardiovascular disease:
the strong heart study. Hypertension 59(1), 29–35 (2012)

25. Schneider, M., Reichold, J., Weber, B., Székely, G., Hirsch, S.: Tissue metabolism
driven arterial tree generation. Medical image analysis 16(7), 1397–1414 (2012)



VesselGPT: Autoregressive Modeling of Vascular Geometry 11

26. Siddiqui, Y., Alliegro, A., Artemov, A., Tommasi, T., Sirigatti, D., Rosov, V., Dai,
A., Nießner, M.: Meshgpt: Generating triangle meshes with decoder-only trans-
formers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 19615–19625 (2024)

27. Sinha, A., Hamarneh, G.: Representing anatomical trees by denoising diffusion of
implicit neural fields. arXiv preprint arXiv:2403.08974 (2024)

28. Sung-Bin, K., Chae-Yeon, L., Son, G., Hyun-Bin, O., Ju, J., Nam, S., Oh, T.H.:
Multitalk: Enhancing 3d talking head generation across languages with multilin-
gual video dataset. arXiv preprint arXiv:2406.14272 (2024)

29. Talou, G.D.M., Safaei, S., Hunter, P.J., Blanco, P.J.: Adaptive constrained con-
structive optimisation for complex vascularisation processes. Scientific Reports
11(1), 1–22 (2021)

30. Taylor, C.A., Petersen, K., Xiao, N., Sinclair, M., Bai, Y., Lynch, S.R., UpdePac,
A., Schaap, M.: Patient-specific modeling of blood flow in the coronary arteries.
Computer Methods in Applied Mechanics and Engineering 417, 116414 (2023)

31. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning.
Advances in neural information processing systems 30 (2017)

32. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

33. Wolterink, J.M., Leiner, T., Isgum, I.: Blood vessel geometry synthesis using gen-
erative adversarial networks. arXiv preprint arXiv:1804.04381 (2018)

34. Wu, J., Hu, Q., Ma, X.: Comparative study of surface modeling methods for vas-
cular structures. Computerized Medical Imaging and Graphics 37(1), 4–14 (2013)

35. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow:
3d point cloud generation with continuous normalizing flows. In: Proceedings of
the IEEE/CVF international conference on computer vision. pp. 4541–4550 (2019)


