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Abstract. In emergency departments (ED), efficient triage is essential for timely 

patient care, but challenges like missing and sparse data often hinder the predic-

tion performance of severity level and department. To address these issues, we 

propose a novel intelligent triage method that incorporates a Conditional Gauss-

ian Mixture Imputation (CGMI) and a Feature Densification Module (FDM). The 

CGMI handles missing data through conditional probability modeling, while the 

FDM obtains correlations between variables by calculating the Manhattan dis-

tance between non-zero values in a one-hot coded feature. In addition, we design 

a multi-scale Feature Extraction Module (mFEM) to capture multi-level semantic 

information from patient complaints. Subsequently, two feature fusion strategies 

were introduced: early fusion and late fusion. The early fusion combines Princi-

pal Component Analysis (PCA)-processed features with another modality. The 

late fusion with enhancement introduces reverse features of another modality and 

applies an attention mechanism to obtain salient features. Experimental results 

show that our method outperforms existing approaches, achieving 84.83% sensi-

tivity, 85.11% specificity, and 61.42% Cohen’s Kappa for severity prediction and 

90.89% sensitivity, 91.04% specificity, and 85.87% Cohen’s Kappa for depart-

ment prediction. Our method significantly improves the sensitivity, specificity, 

and robustness of ED triage, demonstrating superior performance and reliability 

in handling missing and sparse clinical data. The code is available at 

https://github.com/xiaoyiseu/CGMI. 

Keywords: Emergency Department Triage, Missing Data, Feature Fusion. 

1 Introduction 

Triage is a critical emergency care step involving severity assessment and department 

allocation, which directly impacts patient outcomes. Manual triage methods rely heav-

ily on subjective judgment or essential tools, making them highly dependent on com-
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plete data [1]. While experienced physicians can make accurate decisions, less experi-

enced practitioners struggle with incomplete or indistinct information, posing chal-

lenges in determining appropriate severity levels and department assignments. 

The rapid development of artificial intelligence has made intelligent triage possible. 

Many existing methods have shown promising results in triage tasks, such as triage for 

specific conditions (e.g., intensive care or hospitalization [2]), specific diseases (e.g., 

sepsis [3], asthma and COPD [4], lung cancer [5], injury [6] [7], COVID-19 [8] [9]), 

and specific populations (e.g., elderly, adults, and children [1]). Since the emergency 

department (ED) serves a diverse patient population, accurate and efficient triage meth-

ods have become a key area of research [10] [11].  

Complete patient information is crucial for accurate triage, but missing data compli-

cates decision-making. Existing approaches to handling missing data include deletion, 

modelling, and imputation, with the latter two being more commonly used. Modelling 

techniques, especially those leveraging machine learning, probabilistic, and generative 

models, have shown great promise in addressing these challenges. For example, an ef-

ficient alternating expectation-conditional maximization algorithm has been proposed 

for a generalized hyperbolic factor analyzer model to handle missing values [12]. A 

cross-modal generative adversarial network (GAN) has been developed, integrating 

cross-modal fusion and adversarial generation techniques to impute missing values in 

long-term time-series data [13]. In contrast, Imputation methods often fill in missing 

values by leveraging spatially or semantically nearby values. Such techniques encom-

pass K-nearest neighbors [14], regression-based predictions (e.g., Multiple Imputation 

[15]), and random forest-based imputation [16]. Additionally, decentralized federated 

multiple imputation-based fuzzy clustering algorithms have been developed to handle 

complex longitudinal behavioral trial data across varying periods [17]. Approaches us-

ing weighted cross-entropy loss mitigate missing data impact by focusing on available 

labels [18]. However, challenges remain with data integrity, noise, bias, and the inabil-

ity of one-hot encoding to capture the complex relationships in discrete triage data.  

In this paper, we propose a novel intelligent triage method, as shown in Fig. 1, to 

address data missingness using Conditional Gaussian Mixture Imputation (CGMI), 

 

Fig. 1. Architecture of the proposed method, consisting of two branches: one for Severity 

prediction and one for Department prediction. 
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which estimates missing values based on the conditional distribution of observed data. 

We introduce a Feature Densification Module that extracts associations from sparse 

features to enhance feature representation. Additionally, we introduce two feature fu-

sion strategies: early fusion incorporating principal component analysis (PCA)-derived 

global features and late fusion utilizing reverse-ordered features with cross-attention to 

highlight key information. The main contributions of this work are as follows:   

● We propose CGMI, a structured data imputation method that estimates missing 

values using the conditional distribution of observed data. 

● We introduce a cross-modal feature fusion module enhanced by multi-head atten-

tion, with early fusion (introducing another modal PCA dimension reduction fea-

ture) and late fusion (introducing another modal inverse feature).  

● We design a multi-scale Feature Extraction Module (mFEM) to capture semantic 

information from patient complaints across scales.  

2 Methods 

2.1 Problem Definition 

The triage data are divided into structured and unstructured categories. The structured 

data include vital signs (temperature: 0.29%, pulse rate: 45.67%, respiratory rate: 

99.88%, blood pressure: 45.67%, oxygen saturation: 45.70%) and demographic details 

(sex: 0%, age: 0%, and mode of arrival: 4.53%). The percentages indicate the missing 

rates for each variable, with vital signs showing the highest levels of missingness, par-

ticularly the respiratory rate. The unstructured data consists of patient chief complaints.  

Consider a set of unstructured data U={Ui|i∈[1, N]}, Ui=φu(ti), and structured data 

S={Xi|i∈[1,N]}, Xi=φs(si), where ti, si, N, and L represent a chief complaint, structured 

data, the sample size, and the feature dimension, respectively. φu(·) and φs(·) represent 

BERT [19] and the proposed Feature Densification Module (FDM), respectively.  

2.2 Conditional Gaussian Mixture Imputation  

The structured data can be represented as X={Xobs, Xmis}, where Xobs, Xmi denote the 

observed and missing values, respectively. We first assume that the data distribution 

follows a Gaussian Mixture Model (GMM). To model the conditional distribution of 

the missing values, we use the conditional distribution of the Gaussian Mixture Model 

as follows: 

 
1

[ , ], [ , ]( ) ( )
K

mis obs mis mis obs mis obs

k

k

p X X X X X k Cov X X k
=

= ,  (1) 

where [Xmis|Xobs,k] represents the conditional expectation of the missing data given 

the observed data and the k-th Gaussian component, this conditional expectation is 

computed as follows:  

 
1

, , ,
[ | ] ( ), mis obs obs

omis obs bs

k kk X X k X
X X k X 

−
= + −  ,  (2) 

where Σk, Xmis, Xobs represents the covariance between Xmis and Xobs in the k-th Gaussian 

component and Σk, Xobs denotes the covariance of Xobs in the k-th component. 
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Cov[Xmis|Xobs,k] is the conditional covariance of the missing data given the observed 

data, which quantifies the uncertainty in imputing the missing values:  

 
1

, , , , , , ,
,[ | ] mis obs mis obs obs obs mis

mi

k X X k X X k X k

s obs

X X
Cov X X k

−
= −    ,  (3) 

The Expectation-Maximization (EM) algorithm is then iteratively applied to train 

the GMM to obtain the mean and variance of the target distribution. After training, 

missing values are sampled from the learned distribution. Once the GMM model con-

verges, the global parameters of the target distribution for the training set are obtained, 

including the conditional expectation [Xmis|Xobs,k] and conditional covariance 

Cov[Xmis|Xobs,k]. These values are then used to sample and impute the missing data: 

 [ |( , ,], [ | ])
mis mis obs mis obs

iX X X k Cov X X k ,  (4) 

where Xi
mis denotes the missing values obtained from the i-th sampling iteration. 

2.3 Feature Densification of Structured Data  

Given an input vector B FS  , where B denotes the batch size, and F represents the 

number of features, each sample i is first one-hot encoded. Then, the non-zero index 

set 
B NI   within Si is identified:  

 { [ ], 0}, [1, ] i SI i i Bj j=   ,  (5) 

Subsequently, for each sample, i, the distance matrix N

i

ND   between the non-

zero feature indices is calculated. Each element Di[p, q] represents the Manhattan dis-

tance between the indices Ii[p] and Ii[q]:  

 [ ] [ ] [ ] [, ,  , 1, ]i i iD p q I p I q p q N= −  ,  (6) 

To avoid feature redundancy, we concatenate its upper triangular portion into a fea-

ture vector, which can be expressed as:  

 1{ } ,  { [ , ]  ,  [1, ]}up up

i i i

B

iD D DD p q p q i B== =   ,  (7) 

2.4 Feature Extraction and Fusion  

We incorporate components from the chief complaint data to address varying severity 

levels corresponding to the same structured data. PCA is applied to reduce the dimen-

sionality of the chief complaints, which are then concatenated with the structured data. 

LSTM captures dependencies between features, creating a mixed data representation 

where structured data is dominant.  

 ˆ ( ( , ( )))D LSTM Concat D PCA U= ,  (8) 

To further enhance the causal relationships among variables of structured data, we 

employ Self-Attention:  

 
ˆ ˆ

ˆ ˆ ˆ( )

T TT
Q K

V

k k

DW W DQK
S SA D softmax V softmax DW

d d


  
 = = = 

   
   

,  (9) 

where WQ, WK, and WV represent the learnable matrices for Query, Key, and Value, 

respectively. dk is the dimensionality of Key.  
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To better capture semantic information from embeddings of unstructured data, we 

propose a multi-scale Feature Extraction Module (mFEM) as the backbone. The core 

component of this model consists of three parallel residual blocks designed to capture 

both local features and long-range dependencies using two layers of 1D dilated convo-

lution. Each branch process can be expressed as:  

 ( ( )),  1,2,3; 1,2i j jF max ReLU W U i jb= = =+ ,  (10) 

where i represents the branch, Wj and bj denote the weight matrix and bias vector of the 

convolutional layers in the residual block, respectively. Moreover, the final output is 

denoted as: 

 1 2 3( ( , , ) )f fU ReLU W conca bF Ft F= + ,  (11) 

where Wf and bf denote the weight matrix and bias vector of the linear layer, respec-

tively. The features are then processed in reverse order and concatenated with another 

feature. These are passed through a cross-attention mechanism, followed by a linear 

layer with a softmax activation function to produce the final predictions.  

3 Experiments  

3.1 Datasets 

This study retrospectively collected 161,196 pathological records from ED of Peking 

University People’s Hospital between June 2020 and June 2022. The severity levels 

were categorized into Level 4, Level 3, Level 2, and Level 1, with increasing criticality. 

The departments included Surgery, Internal Medicine, Neurology, Otolaryngology, 

Obstetrics, Ophthalmology, Gynecology, Orthopedics, Trauma Center, and 

Neurosurgery. The dataset exhibits significant imbalance, with severe long-tail issues 

in severity-level prediction and department recommendation.  

3.2 Implementation 

All experiments were conducted on a single NVIDIA RTX 2080Ti GPU. The models 

were trained using the AdamW optimizer with a batch size 512, an initial learning rate 

of 0.001, and a weight decay 5e-5. Each model was trained for 100 epochs, with early 

stopping implemented after 10 epochs of no improvement.  

The dataset was randomly split into training, validation, and test sets with a fixed 

random seed, using an 8:1:1 ratio. Performance was evaluated using several metrics, 

including Sensitivity (SE), Specificity (SP), F1-Score (F1), and the Cohen’s Kappa 

coefficient (K), to assess the effectiveness of the proposed method.  

3.3 Ablation Study  

The ablation study in Table 1 highlights the performance improvements by introducing 

different components. Initially, when no modules are used, the severity prediction has 

a sensitivity (SE) of 80.28% and a specificity (SP) of 77.60%, while the department 

prediction achieves an SP of 89.79% and a K of 84.16%. Adding the Feature Extraction 

and Fusion (FEF) module increases SE to 82.76% for severity and improves department 
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prediction with an SP of 90.86% and a K of 85.85%. Including the Feature Densifica-

tion Module (FDM) further improves performance, with severity prediction SE rising 

to 82.95% and K reaching 58.25%. Introducing Conditional Gaussian Mixture Imputa-

tion (CGMI) results in the highest improvement for severity prediction, with SE reach-

ing 84.60% and K at 61.37%. When added to the CGMI and FEF combination, PCA 

provides only slight additional gains. The best overall performance is achieved when 

all modules are combined, with severity prediction reaching a SE of 84.83% and K of 

61.42%, and department prediction showing a K of 85.87%. These results confirm the 

critical role of each module in improving performance, particularly in handling missing 

data and enhancing model robustness in ED triage.  

3.4 Comparisons with the Previous Method  

Table 2 compares the performance of different imputation methods, such as GAN [20], 

Table 1. Ablation study of component contributions to triage prediction performance. 

Component Severity Department 

CGMI PCA FDM FEF 
SE 

(%) 

SP 

(%) 

F1 

(%) 

K 

(%) 

SE 

(%) 

SP 

(%) 

F1 

(%) 

K 

(%) 

× × × × 80.28  77.60  78.33  41.25  89.79  89.77  89.65  84.16  

× × × √ 82.76  82.68  82.52  55.74  90.86  91.02  90.76  85.85  

× × √ √ 82.95  84.07  83.02  58.25  90.65  90.87  90.52  85.48  

√ × × √ 84.60  85.39  84.67  61.37  90.83  91.23  90.70  85.77  

√ √ × √ 84.57  85.41  84.74  61.67  90.89  90.89  90.76  85.86  

√ × √ √ 84.13  83.48  83.64  57.37  90.61  90.80  90.41  85.40  

√ √ √ √ 84.83  85.11  84.77  61.42  90.89  91.04  90.76  85.87  

Bold for max, underlined for second max. 

Table 2. Comparison of imputation methods for triage prediction performance. 

Imputation Method 

Severity Department 

SE 
(%) 

SP 
(%) 

F1 
(%) 

K 
(%) 

SE 
(%) 

SP 
(%) 

F1 
(%) 

K 
(%) 

MICE 84.86  84.81  84.59  60.28  90.66  91.02  90.54  85.49  

GAN 84.14  85.38  84.34  61.08  90.65  90.88  90.57  85.55  
VAE 79.58  78.03  78.31  41.79  90.78  90.90  90.65  85.67  

RF 84.74  84.42  84.51  60.11  90.68  90.78  90.50  85.52  

CGMI (ours) 84.83  85.11  84.77  61.42  90.89  91.04  90.76  85.87  

Table 3. Triage performance comparison across different backbones. 

backbone 

Severity Department 

SE 

(%) 

SP 

(%) 

F1 

(%) 

K 

(%) 

SE 

(%) 

SP 

(%) 

F1 

(%) 

K 

(%) 

Transformer 84.74  85.49  84.76  61.66  90.53  90.54  90.40  85.30  

ResNet 84.40  83.72  84.00  58.21  90.56  90.58  90.40  85.31  
TextCNN 84.41  83.99  84.08  58.66  90.62  90.51  90.47  85.40  

NomFEM 84.73  85.43  84.72  61.48  90.40  90.52  90.27  85.09  

ours 84.83  85.11  84.77  61.42  90.89  91.04  90.76  85.87  

NomFEM indicates that the proposed model does not include the mFEM module. 
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Variational Auto-Encoder (VAE) [21] [22], Multiple Imputation by Chain Equations 

(MICE) [15], Random Forest-based Imputation (RF) [16] for severity and department 

prediction. The proposed CGMI outperforms all other methods, achieving the highest 

F1 of 84.77% and K of 61.42% for severity prediction. It also leads in department pre-

diction with SE of 90.89%, SP of 91.04%, and F1 of 90.76%. MICE and RF show 

similar performance but fall short of CGMI overall, while GAN shows competitive 

results, particularly in K. VAE, though effective in department prediction, performs 

poorly in severity prediction. These results demonstrate CGMI’s superior performance 

in handling missing data.  

To validate the effectiveness of our mFEM, this section further analyzes the 

  
(a) Severity (b) Department 

Fig. 2. Precision-Recall (PR) curves for severity-level prediction and department recommen-

dation using the proposed method in testing set. 

 
 

(a) Severity (b) Department 

Fig. 3. Performance of our method for severity-level and department prediction. 
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department prediction task by replacing the backbone with Transformer [23], ResNet 

[24], and TextCNN [25]. Table 3 compares triage performance across different 

backbone modules under the proposed method. The proposed model outperforms all 

other backbones, achieving the highest SE of 84.83% and K of 61.42% for severity 

prediction and the best performance in department prediction with all metrics. Among 

the other backbones, Transformer shows competitive results with SE of 84.74% and K 

of 61.66%, while ResNet and TextCNN perform slightly worse in sensitivity and spec-

ificity. NomFEM, although practical, shows lower performance than the proposed 

method. These results highlight the superior performance of the proposed model, 

demonstrating its effectiveness in both tasks.  

We utilized the Precision-Recall curves to evaluate the impact of imbalanced data 

on the proposed method. Fig. 2 (a) and (b) show the high Performance for categories 

with large data volumes and poor detection results for the few samples with tiny data 

volumes. For example, in the severity prediction task, the proposed method achieved 

an average precision (AP) of 0.7250 for level 4 (N=37,84) and 0.9747 for level 4 

(N=12,069), indicating its superior performance in identifying severity level. The pro-

posed method performs well in the department prediction task on larger sample cate-

gories, such as Internal Medicine, Surgery, and Ophthalmology. However, performance 

deteriorates for long-tail categories with fewer samples, as limited training data leads 

to insufficient feature learning and significant bias. Analysis of the confusion matrix 

(Fig. 3) and the original data reveals that feature overlap, particularly in long-tail cate-

gories, impairs the model’s ability to distinguish between these classes. For example, 

in structured data, identical features may correspond to different severity levels due to 

the influence of chief complaints. Common terms like “dizziness” appear in the chief 

complaints across multiple departments, causing the model to favor more populous cat-

egories. Similar issues arise in the Trauma Center, where terms like “fall injury” and 

“fracture” overlap with Surgery and Orthopedics, leading to similar biases. Despite 

some distinctions in structured data, the model’s ability to mitigate this bias is limited, 

highlighting the challenge of improving long-tail sample recognition in imbalanced da-

tasets.  

4 Conclusion  

In this paper, we propose a novel approach to enhance severity and department predic-

tion in ED triage by addressing the challenges of missing and sparse data. Our method 

incorporates Conditional Gaussian Mixture Imputation (CGMI) to mitigate the impact 

of missing structured data, a Feature Densification Module (FDM) to capture relation-

ships among sparse variables, and a multi-scale Feature Extraction Module (mFEM) to 

improve the semantic representation of unstructured data. Experimental results demon-

strate that the proposed method significantly outperforms existing approaches, achiev-

ing higher sensitivity, specificity, F1 score and Cohen’s Kappa value across both pre-

diction tasks. Future work will explore further optimization and broader clinical appli-

cations of the model.  
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