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Abstract. Medical image segmentation plays a vital role in healthcare
by identifying and delineating specific structures, such as organs, tumors,
or lesions, from medical images. While deep learning has significantly ad-
vanced this field, existing methods face two major challenges. First, they
rely on pixel-wise discrete representations, which lead to difficulties in
scaling to different input sizes and create ambiguity in fine boundary de-
lineation. Second, the presence of noisy labels in medical datasets hinders
model accuracy. To address these challenges, we propose a novel approach
that leverages continuous representations and incorporates three key
components: the Hierarchical Channel-Attention Encoder (HCAE), the
Three-Stage Implicit Decoder with Noise-Based Index Selector (NBIS),
and the High-Frequency Noise Modulator (HFNM). HCAE enhances fea-
ture extraction by capturing both fine and coarse details through hierar-
chical attention mechanisms. NBIS refines segmentation by identifying
stable and unstable feature indices, improving performance in challenging
regions. Meanwhile, HFNM selectively introduces noise to high-frequency
components, helping the model mitigate the effects of label noise. This
comprehensive solution demonstrates improved segmentation accuracy,
particularly in the presence of noisy labels, making it a promising ap-
proach for medical image analysis.

Keywords: Medical image segmentation · Hierarchical Channel-Attention
Encoder · Implicit representations · Noisy Label.

1 Introduction

Medical image segmentation is a crucial task in healthcare, aimed at delineating
and identifying specific structures or regions of interest in medical images, such
as organs, tumors, or lesions. Deep learning (DL) has revolutionized this field
by automating feature extraction and enabling models to learn complex pat-
terns [14]. Various deep learning methods have been proposed for this task [20,
3, 15], achieving strong performance. However, two main challenges remain with
these methods. The first challenge is that they primarily focus on pixel-wise
predictions, that is, on discrete representations. These discrete representations
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lack spatial continuity, leading to discretization artifacts and limited flexibility
when dealing with arbitrary input sizes or fine-grained boundary details. This
is critical in medical image analysis, as precise boundaries help distinguish be-
tween different tissues or anatomical structures. The second challenge is the
prevalence of noisy labels in medical datasets [21, 11], a widespread issue often
caused by human bias or inconsistencies. The direct application of supervised
learning methods to data with noisy labels consistently leads to a decline in
model performance [1].

To address the first challenge, researchers have explored continuous represen-
tations as an alternative to discrete predictions [27, 22, 9]. Continuous represen-
tations leverage Implicit Neural Representations (INRs) [17] to convert discrete
segmentation outputs into a continuous space. Several approaches achieve this
by learning a mapping between encoded image features and grid coordinates, al-
lowing for adaptability across different output resolutions. However, despite their
effectiveness, these methods often rely on features extracted from a single resolu-
tion and do not sufficiently capture both global context and local details, leading
to poor segmentation performance in complex structures and boundary regions.
Furthermore, their performance declines when faced with noisy labels. To address
both of these issues, we propose HierachSAM. HierachSAM utilizes three com-
ponents: Hierarchical Channel-Attention Encoder (HCAE), Three stage implicit
decoder with Noise-Based Index Selector (NBIS), and High-Frequency Noise
Modulator (HFNM).

To efficiently capture global context and local details, we utilize a hierarchical
encoder based on SAM [10] to extract both fine-grained and coarse-level features.
These features are then combined and passed through the Channel-Wise Hierar-
chical Attention (CWHA) mechanism, enabling the model to focus on the most
informative features across both channels and spatial resolutions. Additionally,
to further enhance performance in boundary regions, the NBIS module, which is
integrated within the implicit decoder, selects both stable and unstable indices
based on the variance between the original and noisy feature representations,
identifying parts of the feature vector that require further refinement. This pro-
cess enhances segmentation in challenging regions. In the HFNM module, the
image is first decomposed using wavelet transforms to separate it into different
frequency components. Controlled perturbations are then introduced specifically
to the high-frequency components, which primarily represent edges, boundaries,
and textures. Since label noise often appears in regions with complex boundaries,
introducing noise to these high-frequency features during training encourages the
model to learn more robust representations. By leveraging the HFNM module,
the model becomes better equipped to handle label noise and improve feature
extraction in high-frequency regions.

The main contributions of our work are as follows: (1) We introduce HCAE to
enhance implicit segmentation by effectively capturing hierarchical features and
focus on the most informative features across both channels and spatial resolu-
tions. While three-stage implict decoder refines feature representations by using
NBIS. (2) We propose HFNM to mitigate the impact of label noise by introducing
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Fig. 1: Overview of our proposed framework: HCAE is utilized for improved
feature learning, while NBIS within the implicit decoder refines segmentation in
challenging regions, and HFNM enhances robustness against noisy labels.

controlled perturbations in high-frequency regions, improving model robustness.
(3) Our approach outperforms existing methods on two medical datasets. Ad-
ditionally, we conduct experiments under noisy conditions to demonstrate the
effectiveness of our method.

2 Method

2.1 Preliminaries

In line with other approaches, we utilize the same convention as [22]. In conven-
tional discrete segmentation, we have 𝑁 medical images 𝑋 ∈ R𝐻×𝑊×3, which are
mapped to class probability maps 𝑂 ∈ R𝐻×𝑊×𝐾 while maintaining the original
resolution, where 𝐻 and 𝑊 represent the height and width of the image, respec-
tively and K is the number of classes. In contrast, implicit image segmentation
takes each pixel coordinate 𝑝𝑖 = (𝑥, 𝑦), where 𝑥, 𝑦 ∈ [−1, 1], and maps it along
with the corresponding image 𝑋𝑖 to class probabilities 𝑜𝑖 ∈ R𝐾 using a neural
network 𝑁𝜃 . This is formulated as 𝑁𝜃 : (𝑝𝑖 , 𝑋𝑖) → 𝑜𝑖, where 𝜃 represents the
network parameters. Unlike discrete segmentation, this method integrates spa-
tial coordinates directly, enabling flexible predictions at arbitrary resolutions.
This allows transformations from 𝑋 ∈ R𝐻×𝑊×3 to 𝑂 ∈ R𝐻

′×𝑊 ′×𝐾 , adapting the
segmentation output to different scales.

2.2 Hierarchical Channel-Attention Encoder

In medical images, structures can vary greatly in size, shape, and position. Hi-
erarchical features help the model understand different scales of features, from
coarse (high-level structures) to fine (detailed anatomical boundaries). To ef-
ficiently capture these hierarchical features, we utilize both a feature encoder
and a prompt encoder based on the SAM [10]. SAM has demonstrated strong
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potential as a backbone for various segmentation tasks. Consequently, several
works employ diverse adapters using parameter-efficient fine-tuning (PEFT) to
adapt SAM for medical image segmentation [23, 24]. However, in contrast to fine-
tuning all parameters in the image encoder, we leverage the Low-Rank Adapter
(LoRA) to update only a small fraction of parameters, which allows us to effi-
ciently adapt SAM to medical images [22]. Furthermore, we introduce our novel
Channel-Wise and Hierarchical Attention (CWHA) mechanism, to focus on the
most informative features across both channels and spatial resolutions.

Combining the embeddings from multiple layers helps capture features at
different levels. However, combining them simply does not yield improvements.
To efficiently combine these embeddings, we utilize CWHA mechanism, Specif-
ically, If the embeddings of the encoder at layer 𝑙 are denoted as 𝐸𝑙, given four
sets of embeddings with shapes (𝐶, 𝐻,𝑊)—where 𝐶 represents the channel di-
mension and 𝐻 ×𝑊 represents the spatial dimensions—the CWHA mechanism
applies a series of transformations to compute attention weights for each hier-
archical level. Each set of embeddings is first interpolated to match the spatial
dimensions of the original image. Once all embeddings are of same size, we apply
channel averaging as given below:

e𝑙 =
1

𝐻𝑊

𝐻∑︁
ℎ=1

𝑊∑︁
𝑤=1

𝐸𝑙 [:, ℎ, 𝑤] (1)

where 𝑙 ∈ {1, 2, 3, 4} denotes the embedding levels. Next, we introduce a
randomly initialized vector, v ∈ R𝐶 , which will weight each channel. The dot
product between e𝑙 and v is passed through a ReLU activation to ensure non-
negativity, giving us a channel-weighted vector as given below:

w𝑖 = ReLU(e𝑙 · v) (2)

The channel-weighted vector w𝑖 is then used to reweight the original embed-
dings 𝐸𝑙, emphasizing the most relevant channels:

𝐸 ′
𝑙 = 𝐸𝑙 ⊙ w𝑖 (3)

where ⊙ denotes element-wise multiplication. Further, we perform a 3D aver-
age pooling on the reweighted embeddings across the hierarchical levels, followed
by a softmax operation applied across these four levels to compute the attention
weights. Let a ∈ R4 represent the vector of attention weights for each level:

al = softmax (pooling(E′
𝑙)

Finally, we compute the combined embedding as a weighted sum of the em-
beddings from each hierarchical level:

4∑︁
𝑖=1

𝑎𝑙 · 𝐸 ′
𝑙
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2.3 Three Stage Implicit Decoder with Noise-Based Index Selector

In implicit decoder [22], image and prompt features are interpolated from the
source to the target resolution and concatenated with target coordinates, 𝑝,
which are normalized to [−1, 1]. To avoid bias from direct coordinate usage, a
high-frequency positional encoding is applied to the coordinates [18]. The en-
coded coordinates, along with the interpolated image and prompt features, are
then concatenated and passed into the decoder.

To further refine the features, we utilize a Noise-Based Index Selector (NBIS),
which samples important positional indices from the output feature vector based
on the variance between original and noisy representations of the feature. This
helps identify both stable and unstable indices, highlighting which parts of the
feature vector require further refinement. Specifically, we create a noisy repre-
sentation of the feature by adding speckle noise denoted by n𝑠 ∼ N(1, 𝜎2

𝑠 ), to
get: f̃𝑠 = f · n𝑠. Next we add Gaussian noise n𝑔 ∼ N(0, 𝜎2

𝑔 ) to f̃𝑠 to obtain the
final noisy features:

f̃ = f̃𝑠 + n𝑔

Now, we pass both f and f̃ through the linear layers to obtain the output vec-
tors o and õ, respectively. The variance v between these two outputs is computed
element-wise as:

v = (o − õ)2

We select the top 𝑘 indices based on the highest values in v, corresponding
to the indices with the greatest variance. These indices represent the parts of
the feature vector that are less stable and may require additional refinement.

To effectively refine the indices that are uncertain, we utilize the Three-Stage
Implicit Decoder. In this decoder, at each subsequent stage, the top 𝑘1 and 𝑘2
unstable coordinates are selected. The decoder consists of three stages, where
each stage involves a combination of linear layers and outputs a segmentation
mask. Specifically, the features 𝑓 are passed through the first-stage layers, pro-
ducing the mask 𝑀1. Stable and unstable coordinates are then selected using
the NBIS mechanism. The top 𝑘1 unstable coordinates are forwarded to the
second stage for further refinement. This process is repeated in the third stage,
where the remaining unstable coordinates undergo additional refinement. This
noise-based sampling strategy helps the model focus on both stable and unsta-
ble indices, ensuring that features needing further attention are identified and
refined.

2.4 High-Frequency Noise Modulator

Noisy labels are a frequent obstacle when training deep neural networks effec-
tively. To address this issue, previous research has introduced various techniques
to enhance noise tolerance and improve model performance. In this work, we
utilize the power of frequency domain to lessen the impact of noisy labels.

We convert the input images into the wavelet space using discrete wavelet
transformations (DWT) with Haar wavelets. This process allows us to separate
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Table 1: Comparison of segmentation performance across different methods.
Binary Polyp Segmentation Multi-class Organ Segmentation

Method Dice (%)↑ HD Distance ↓ Method Dice (%)↑ HD Distance ↓
Discrete Approaches

U-Net [20] 63.89±1.30 31.30 U-Net 74.47±1.57 6.50
PraNet [5] 82.56±1.08 - UNETR 81.14±0.85 -

Res2UNet [6] 81.62±0.97 - Res2UNet 79.23±0.66 -
nnUNet [7] 82.97±0.89 - nnUNet 85.15±0.67 -

MedSAM [16] 82.88±0.55 21.53 MedSAM 85.85±0.81 10.62
ConDSeg [13] 89.1 - - - -

- - - TDFormer [4] 90.1 5.7
Implicit Approaches

OSSNet [19] 76.11±1.14 - OSSNet 73.38±1.65 -
IOSNet [9] 78.37±0.76 51.57 IOSNet 76.75±1.37 21.46
SwIPE [27] 85.05±0.82 - SwIPE 81.21±0.94 -

I-MedSAM [22] 91.49±0.52 11.59 I-MedSAM 89.91±0.68 5.95
Ours 92.68±0.32 9.74 (ours) 91.67±0.24 5.23

an image into its low-frequency components, representing broad structural infor-
mation, and high-frequency components, capturing detailed variations. For a 2D
image, we obtain four distinct frequency components, which can be expressed
as:

𝐿𝐿, {𝐿𝐻, 𝐻𝐿, 𝐻𝐻} = 𝐷𝑊𝑇 (𝑋), (4)

where 𝐿𝐿 captures low-frequency information, while 𝐿𝐻, 𝐻𝐿, 𝐻𝐻 encode
high-frequency details. We introduce random perturbations to the high-frequency
coefficients, with details provided in the supplementary material. The perturbed
coefficients, 𝐿𝐻, 𝐻𝐿, 𝐻𝐻, are then reconstructed using the Inverse Discrete Wavelet
Transform (IDWT):

𝑋 = 𝐼𝐷𝑊𝑇 (𝐿𝐿, 𝐿𝐻, 𝐻𝐿, 𝐻𝐻). (5)

We utilize the 𝑋 in the same way as 𝑋. This approach is useful in combating
label noise, as noisy annotations often affect fine-grained structures like edges
and textures. By training on augmented images where high-frequency details
are altered but low-frequency structures remain stable, the model becomes less
sensitive to mislabeled or uncertain regions, improving its ability to generalize
and make consistent predictions despite noisy labels.

2.5 Training

For training, the pre-trained SAM’s image encoder Enc𝐼 is kept frozen, LoRA
and prompt encoder Enc𝑃, and INRs remain trainable. We leverage SAM’s image
encoder with LoRA to extract features from medical images 𝑋, while the prompt
encoder processes coarse bounding box 𝑃 features for target segmentation, as
shown in Figure 1. The bounding box 𝑃 is preprocessed following previous work
[26]. Finally, the extracted features, along with mapped coordinate values, are
concatenated and decoded using the proposed three-stage INR decoder.
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Fig. 2: Qualitative results of the proposed method.

With three-stage INR decoder, we obtain three INRs (Figure 1), which pro-
vide three point-wise segmentation probabilities {𝑜1, 𝑜2, 𝑜3}, combined as 𝑜. For
training optimization, we adopt the conventional segmentation loss, formulated
as:

𝐿seg (𝑜𝑖 , 𝑜𝑖) = 𝐿CeDice (𝑜𝑖 , 𝑜𝑖) (6)

where 𝐿CeDice = 0.5(𝐿ce+𝐿dice) and 𝐿ce and 𝐿dice represent the Cross Entropy
loss and Dice loss, respectively. Similarly, we pass the 𝑋 to the encoder and
decoder and get the final output as 𝑜′.

𝐿seg_HFNM (𝑜𝑖 , 𝑜′𝑖) = 𝐿CeDice (𝑜𝑖 , 𝑜′𝑖) (7)

The final loss is defined as follows:

𝐿final = 𝐿seg (𝑜𝑖 , 𝑜𝑖) + 𝜂 · 𝐿seg_HFNM (𝑜𝑖 , 𝑜′𝑖) (8)

3 Experiments

Datasets. We conducted experiments on two datasets. The Kvasir-Sessile dataset
[8] is a challenging dataset for binary polyp segmentation, containing 196 RGB
images of small sessile polyps. The second dataset, BCV [12], is used for multi-
organ segmentation and includes 30 CT scans annotated with 13 organs. To eval-
uate the model’s generalization ability, we tested the pre-trained model—trained
on the Kvasir-Sessile dataset—directly on the CVC-ClinicDB dataset [2], which
consists of 612 images from 31 colonoscopy sequences.

3.1 Experimental Results

Segmentation Comparisons. We compare our approach with both discrete
and implicit methods, as shown in Table 1. For the smaller polyp dataset, we
observe significant improvements over the best-performing implicit and discrete
methods, as shown in Table 1. In the case of multi-organ segmentation on the
BCV dataset, we also achieve notable performance improvements compared to
the leading implicit and discrete methods. The qualitative results are shown in
Figure 2.
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Table 2: Cross-domain and Cross-resolution results on binary polyp datasets.
Method Kvasir-Sessile Kvasir-Sessile → CVC 384 → 128 384 → 896
nnUNet [7] 63.89 84.91 73.97 83.56
MedSAM [16] 82.88 74.59 82.37 83.32
IOSNet [9] 78.37 70.10 76.18 78.01
I-MedSAM [22] 91.49 88.83 91.45 91.33
Ours 92.68 92.07 92.8 92.43

Table 3: Experiments with noisy labels on binary polyp segmentation.
Noise (0.7, 0.03, 180) Noise (0.3, 0.05, 200) Noise (0.8, 0.05, 200)

Method Dice (%)↑ HD (%)↓ Dice (%)↑ HD (%)↓ Dice (%)↑ HD (%)↓
I-MedSAM 86.2 18.33 83.87 19.49 84.37 18.71
I-MedSAM v2 87.1 17.39 85.1 18.45 85.86 17.89
Ours (without HFNM) 89.21 14.21 88.43 15.61 87.93 15.42
Ours (with HFNM) 90.05 12.61 89.47 13.72 89.1 13.31

Cross-Resolution and Cross-Domain Comparisons. We compare the ro-
bustness across two different resolutions: 128×128 for lower resolutions and 896
× 896 for higher resolutions. As shown in Table 2, our method achieves the
highest performance across both output resolutions. Secondly, we investigate
the robustness of model performance across different datasets for the same task.
In the binary-class polyp segmentation task, all methods are pre-trained on the
Kvasir-Sessile dataset and evaluated directly on the CVC dataset. As shown in
Table 2, our method outperforms existing methods.
Segmentation Comparison on Noisy Annotations. Following [25], we sim-
ulate annotation noise, with specific details provided in the supplementary ma-
terials. We evaluate our method under three different types of noise, as shown
in Table 3. First, we compare our approach with I-MedSAM, the state-of-the-
art (SOTA) method for implicit medical image segmentation. Our method sig-
nificantly outperforms I-MedSAM. However, since I-MedSAM is not explicitly
designed for noisy annotations, we further enhance its robustness to noise us-
ing the approach given in [3], which we refer to as I-MedSAM v2. Despite this
adaptation, as shown in Table 3, our method still achieves a significantly higher
performance margin.

4 Ablation Studies

Component-wise ablations. To evaluate the effectiveness of each component,
we perform a component-wise ablation study on the Kvasir-Sessile dataset, as
shown in Table 4. First, we report the Dice score for the baseline, which is defined
as using the pre-trained SAM model with LoRA and INR for segmentation. Next,
we introduce the CWHN component, resulting in a 2.27% improvement in Dice
score performance. Furthermore, utilizing a three-stage decoder without NBIS
yields an improvement of 0.8%, while incorporating NBIS further enhances the
results by an additional 0.8%.
Three-stage decoder ablations. We first experimented with a two-stage de-
coder, which achieved a Dice score of 91.4. Incorporating NBIS improved the
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Table 4: Effectiveness of each component of the pipeline. We evaluate the Dice
metric for both cross-domain and cross-resolution tasks.

Baseline CWHN Three-Stage decoder NBIS Kvasir-Sessile
✓ 88.8
✓ ✓ 91.1
✓ ✓ ✓ 91.9
✓ ✓ ✓ ✓ 92.7

score to 92.0. However, switching to a three-stage decoder with NBIS further
improved the Dice score by 0.7% compared to the two-stage version.

5 Conclusion

In this work, we address two key challenges in medical image segmentation: the
limitations of discrete pixel-wise representations and the adverse effects of noisy
labels. To overcome these issues, we propose a novel framework that leverages
implicit neural representations and enhanced feature extraction mechanisms.
Specifically, Our method integrates hierarchical channel-attention based encod-
ing (HCAE) for improved feature learning, a noise-based index selector (NBIS)
within the three-stage implicit decoder to refine segmentation in challenging re-
gions, and a high-frequency noise modulator (HFNM) to enhance robustness
against noisy labels. Experimental results demonstrate that our method outper-
forms existing approaches across two datasets and proves effective in clean and
noisy label scenarios.
Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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