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Abstract. Accurate segmentation of brain images typically requires the
integration of complementary information from multiple image modal-
ities. However, clinical data for all modalities may not be available for
every patient, creating a significant challenge. To address this, previ-
ous studies encode multiple modalities into a shared latent space. While
somewhat effective, it remains suboptimal, as each modality contains
distinct and valuable information. In this study, we propose DC-Seg
(Disentangled Contrastive Learning for Segmentation), a new method
that explicitly disentangles images into modality-invariant anatomical
representation and modality-specific representation, by using anatomical
contrastive learning and modality contrastive learning respectively. This
solution improves the separation of anatomical and modality-specific fea-
tures by considering the modality gaps, leading to more robust repre-
sentations. Furthermore, we introduce a segmentation-based regularizer
that enhances the model’s robustness to missing modalities. Extensive
experiments on the BraTS 2020 and a private white matter hyperin-
tensity(WMH) segmentation dataset demonstrate that DC-Seg outper-
forms state-of-the-art methods in handling incomplete multimodal brain
tumor segmentation tasks with varying missing modalities, while also
demonstrate strong generalizability in WMH segmentation. The code is
available at https://github.com/CuCl-2/DC-Seg.

Keywords: Brain Tumor Segmentation · Multi-modal · Missing Modal-
ity · Contrastive Learning · Disentangled Learning.

1 Introduction

Accurate brain image segmentation is crucial for assessing disease progression
and developing effective treatments. Brain MRI, with modalities like T1, T2,
T1ce, and FLAIR, provides varying sensitivity to lesion regions depending on
imaging parameters and protocols [5]. Joint learning across these multimodal im-
ages improves segmentation accuracy compared to single-modality approaches.
Common methods involve concatenating images from different modalities [9, 26,
2] or integrating features in high-dimensional spaces [6, 19, 24]. However, missing
modalities due to protocol variations or patient factors pose a challenge.
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Significant efforts have been made to address the challenges posed by missing
modalities in practical scenarios, with existing solutions falling into three main
categories. The first approach synthesizes missing modalities to complete the
test set [20, 18, 13]. This involves training a generative model to generate miss-
ing modalities, but it often requires additional training and struggles when only
one modality is available during inference. The second approach trains a ded-
icated model for each specific missing-modal scenario. Methods like [8, 4, 21, 1]
distill knowledge from a multimodal teacher network to monomodal students at
the image and pixel levels. Considering the varying sensitivities of lesion regions
across modalities, GSS [16] selects a group leader for distillation. While these
methods perform well when multiple modalities are missing, they incur high
computational and memory costs, requiring 2N − 1 models for N modalities.
The third approach attempts to handle all missing-modal situations with a sin-
gle unified model, embedding all modalities into a shared latent space, followed
by feature fusion for segmentation [7, 3]. RFNet [5] uses a region-aware fusion
module to adaptively combine features from available modalities on different re-
gions, while mmFormer [25] leverages Transformer for long-range dependencies,
and M3AE [11] employs multimodal autoencoders to reduce model complexity
by creating a unified latent representation.

While valuable, these studies often overlook modality gaps, failing to learn
invariant feature representations across modalities, which impairs performance
in missing-modality scenarios. To address this, some approaches [3, 1, 22] decom-
pose images into modality-invariant and modality-specific components, using in-
variant representations for segmentation. For instance, SMU-Net [1] posits that
deeper network layers capture content representations, while shallower layers
preserve style representations. Similarly, RobustSeg [3] decouples content and
appearance codes by reconstructing images. D2Net [22] learns modality-specific
codes through contrastive learning applied to different MRI slices.

In this study, we introduce bidirectional contrastive learning, complementing
the traditional reconstruction task to achieve effective decoupling. Unlike pre-
vious models, our approach applies both anatomical and modality contrastive
learning at the 3D MRI image level. This allows us to learn not only modality
representations but also modality-invariant anatomical representations which
are crucial for accurate segmentation. By performing contrastive learning on
the full 3D image, we achieve more comprehensive feature extraction. Specif-
ically, anatomical contrastive learning pulls features from the same individual
across modalities closer, while pushing features from different individuals apart.
Similarly, modality contrastive learning pulls features from the same modality
across different individuals closer while pushing features from different modalities
apart. Additionally, a segmentation-based regularizer is incorporated to further
enhance the model’s robustness to incomplete modalities.

We validate our method on the BRATS [14] dataset for multimodal brain tu-
mor segmentation, achieving competitive performance in full-modality scenarios
and superior robustness in missing-modality settings. Additionally, we demon-
strate its generalizability on a private WMH segmentation dataset.
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Fig. 1: Overview of DC-Seg, which disentangles images from different modali-
ties into anatomical and modality representations using bidirectional contrastive
learning, and fuses modality-invariant anatomical representations for the down-
stream tumor segmentation task. For clarity in the figure, Dsep is omitted.

2 Method

An overview of our proposed DC-Seg is shown in Fig. 1. First, we decouple
the multimodal inputs into modality-specific and modality-invariant anatomical
representations using both the traditional reconstruction task and our proposed
novel bidirectional contrastive learning approach. Next, we fuse the anatomical
representations from different modalities for tumor segmentation. Additionally, a
segmentation-based regularizer is introduced to prevent the model from becom-
ing highly dependent on discriminative modalities (e.g., T1ce, FLAIR) for brain
tumor recognition, which could lead to significant degradation in performance
when these discriminative modalities are missing. The detailed learning process
and network architecture are described below.

2.1 Bidirectional Contrastive Learning

In this part, we describe how images are disentangled into anatomical and
modality-specific representations. Traditional methods [10, 15, 3] achieve this
by reconstructing images from fused anatomical representation and modality-
specific representations across all modalities. However, these methods only en-
sure that the fused anatomical representation is well-learned and do not guaran-
tee that the anatomical representation for each modality is modality-invariant,
which can lead to performance degradation when modalities are missing. To
address this issue, we introduce bidirectional contrastive learning to ensure
that anatomical representations across all modalities are effectively learned and
aligned.

Here’s how it works, given a batch of multimodal images {xi
j}, where i ∈

{1, . . . , N} indexes the samples and j ∈ {1, . . . ,M} indexes the modalities, with
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M = 4 in our brain tumor segmentation task, each modality xi
j from sam-

ple xi is passed through its respective anatomical encoder Eana
j and modality

encoder Emod
j to obtain corresponding disentangled anatomical representation

aij = Eana
j (xi

j) and modality representation mi
j = Emod

j (xi
j). For the modal-

ity representation, we follow the common practice in [10], representing it as
an 8-bit vector mi

j ∈ RC , while the anatomical representation is encoded as
multichannel 3D feature maps aij ∈ RC×d×d×d. Intuitively, we aim to align dif-
ferent modalities of the same sample to share a common anatomical representa-
tion, which is essential for downstream tasks like brain tumor segmentation. For
modality-specific representations, we ensure that images from the same modal-
ity are closely aligned. To achieve these objectives, we introduce bidirectional
contrastive learning.

In anatomical contrastive learning, given an anchor image xi
j , the positive

samples are images from the same subject, denoted as xi′

j′ , i′ = i while the
negative samples are from different subjects (i′ ̸= i). Since each anchor image
has multiple positive samples, we do not use the softmax-based contrastive loss
as in CLIP [17]. Instead, we employ a sigmoid-based loss similar to [23]. Formally,
the anatomical contrastive loss Lana is defined as:

Lana = − 1

(N ·M)2

∑
i,j,i′,j′

log
1

1 + e
f(i,i′)·

(
−t·SSIM(ai

j ,a
i′
j′ )

) (1)

f(i, i′) =

{
1, if i = i′,

−1, if i ̸= i′
(2)

where a batch containing N ×M images results in (N ×M)2 pairs. f(i, i′)
is used to determine whether two images belong to the same sample. The tem-
perature scaling factor t controls the sharpness of the distribution, influencing
the model’s sensitivity to positive and negative pairs. The SSIM(aij , a

i′

j′) defined
below represents the channel-wise mean of structural similarity between the fea-
ture maps aij,c and ai

′

j′,c for each channel. The constants C1 and C2 are small
values introduced to prevent division by zero and stabilize the computation.

SSIM(aij , a
i′

j′) =
1

C

C∑
c=1

(2µai
j,c
µai′

j′,c
+ C1)(2σai

j,c,a
i′
j′,c,

+ C2)

(µ2
ai
j,c

+ µ2
ai′
j′,c

+ C1)(σ2
ai
j,c

+ σ2
ai′
j′,c

+ C2)
(3)

Similar to the anatomical contrastive loss in Eq. 1, the modality contrastive
loss Lmod is defined as Eq. 4, with a key distinction: images from the same
modality are treated as positive pairs (i.e., j = j′), while images from different
modalities are treated as negative pairs. Since the modality representation mi,j

is an 8-bit vector, cosine similarity is used instead of SSIM. The similarity is

defined as: sim(mi
j ,m

i′

j′) =
mi

j ·m
i′
j′

∥mi
j∥2∥mi′

j′∥2
.

Lmod = − 1

(N ·M)2

∑
i,j,i′,j′

log
1

1 + e
f(j,j′)·

(
−t·sim(mi

j ,m
i′
j′ )

) (4)
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In addition to the bidirectional contrastive learning discussed above, we
adhere to the assumption that, for successful disentanglement, the obtained
anatomical representation should be re-renderable into the original image when
paired with the modality representation of any given modality [10]. Specifically,
we fuse the anatomical representations from different modalities to obtain zi

following [5], and then reconstruct the image using a set of modality-specific
decoders, {Drec

j }, given zi and the modality representation mi
j . The loss func-

tion is defined below, where we use the L1-norm to prevent image blurring. A
Bernoulli indicator δi is employed to enhance the robustness of the content rep-
resentation z to missing data, with modality dropout applied in the latent space
by randomly setting δi to 0.

Lrec =
N∑
i=1

M∑
j=1

∥Drec
j (zi,mi

j)− xi
j∥1, where zi = F(δ1a

i
1, δ2a

i
2, . . . , δMaiM ),

(5)
The final disentanglement loss is defined as follows.

Ldisentangle = Lana + Lmod + Lrec (6)

2.2 Learning Process

Due to the high sensitivity of certain discriminative modalities (e.g., T1ce,
FLAIR) to specific tumor regions, the model tends to depend on these modalities
for segmentation, resulting in significant performance degradation when they are
unavailable. Therefore, it is critical to encourage the model to segment based on
all modalities. To achieve this, we introduce a segmentation-based regularizer
like [5, 25]. Specifically, we use a weight-shared decoder Dsep to segment based
on every single modality separately. The corresponding weighted cross-entropy
loss and Dice loss are used as regularization terms, expressed as:

Lreg =

N∑
i=1

M∑
j=1

(
LWCE(D

sep(aij), y
i) + LDL(D

sep(aij), y
i)
)
, (7)

As illustrated in Fig. 1, the fused anatomical feature zi is used to predict the
final segmentation mask through Dfuse. The weighted cross-entropy loss and Dice
loss are employed to align the predictions with the corresponding ground-truth
segmentation maps, as expressed below:

Lseg =

N∑
i=1

(
LWCE(D

fuse(zi), yi) + LDL(D
fuse(zi), yi)

)
, (8)

Therefore, the overall loss of our DC-Seg is defined below, with α as a hy-
perparameter for the tradeoff.

L = Lseg + Lreg + αLdisentangle (9)
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Table 1: Results of the proposed method and state-of-the-art unified models on
BraTS 2020 dataset. Dice similarity coefficient is employed for evaluation with
every combination of modality settings. • and ◦ denote available and missing
modalities, respectively.
Modalities Complete Core Enhancing

F T1 T1c T2 RobustSeg RFNet mmFormer M3AE DC-Seg RobustSeg RFNet mmFormer M3AE DC-Seg RobustSeg RFNet mmFormer M3AE DC-Seg

◦ ◦ ◦ • 82.20 86.05 85.51 86.10 86.72 61.88 71.02 63.36 71.80 70.88 36.46 46.29 49.09 47.10 47.76
◦ ◦ • ◦ 71.39 76.77 78.04 78.90 79.54 76.68 81.51 81.51 83.60 84.62 67.91 74.85 78.30 73.60 78.90
◦ • ◦ ◦ 71.41 77.16 76.24 79.00 78.47 54.30 66.02 63.23 69.40 66.63 28.99 37.30 37.62 40.40 42.19
• ◦ ◦ ◦ 82.87 87.32 86.54 88.00 87.80 60.72 69.19 64.60 68.70 71.27 34.68 38.15 36.68 40.20 41.66
◦ ◦ • • 85.97 87.74 87.52 87.10 88.17 82.44 83.45 82.69 85.60 86.34 71.42 75.93 77.20 76.00 80.43
◦ • • ◦ 76.84 81.12 80.70 80.10 82.22 80.28 83.40 82.81 83.80 85.18 70.11 78.01 81.71 75.30 79.25
• • ◦ ◦ 88.10 89.73 88.76 89.60 90.01 68.18 73.07 71.76 72.80 74.50 39.67 40.98 42.98 43.70 46.90
◦ • ◦ • 85.53 87.73 86.94 87.30 88.09 66.46 73.13 67.76 72.90 73.09 39.92 45.65 49.12 48.70 50.19
• ◦ ◦ • 88.09 89.87 89.49 90.10 90.32 68.20 74.14 70.34 74.30 75.11 42.19 49.32 49.06 47.10 51.32
• ◦ • ◦ 87.33 89.89 89.31 89.50 89.99 81.85 84.65 83.79 85.50 85.90 70.78 76.67 79.44 75.90 80.28
• • • ◦ 88.87 90.69 89.79 89.60 90.65 82.76 85.07 84.44 85.60 86.29 71.77 76.81 80.65 76.30 81.41
• • ◦ • 89.24 90.60 89.83 90.20 90.77 70.46 75.19 72.42 74.40 75.53 43.90 49.92 50.08 48.20 52.05
• ◦ • • 88.68 90.68 90.49 90.50 90.62 81.89 84.97 83.94 85.80 86.21 71.17 77.12 78.73 77.40 79.42
◦ • • • 86.63 88.25 87.64 87.40 88.73 82.85 83.47 83.66 85.80 86.49 71.87 76.99 77.34 78.00 81.66
• • • • 89.47 91.11 90.54 90.40 90.95 82.87 85.21 84.61 86.20 86.46 71.52 78.00 79.92 77.50 81.52

Average 84.17 86.98 86.49 86.90 87.54 73.45 78.23 76.06 79.10 79.63 55.49 61.47 63.19 61.70 65.00

3 Experiments and Results

Datasets and Implementation. The experiments are conducted using the
BraTS 2020 dataset [14] and a private white matter hyperintensity segmen-
tation dataset(SAHZU-WMH) from The Second Affiliated Hospital, Zhejiang
University School of Medicine.

The BraTS 2020 dataset includes 369 multi-contrast MRI scans across four
modalities (T1, T1c, T2, FLAIR), with tumor subregions: whole tumor, tumor
core, and enhancing tumor. All volumes are skull-stripped, co-registered to a
common anatomical template, resampled to 1mm³ isotropic resolution, and nor-
malized to zero mean and unit variance within the brain tissue. Patches of size
112 × 112 × 112 are randomly cropped and used as input to the network during
training.

The SAHZU-WMH dataset includes 41 patients with cognitive impairment,
each with two follow-up MRI scans (average interval of 473 days), totaling
80 multi-modal scans (FLAIR and T1) after excluding one missing follow-up
and one incorrect annotation. White matter hyperintensity regions are anno-
tated. Preprocessing follows the same steps as BraTS 2020, with patches of size
128×128×128. The dataset is split into 60 scans from 31 individuals for train-
ing and 20 scans from 10 individuals for testing, ensuring no overlap between
subjects in the training and test sets.

Random flips, cropping, and intensity shifts are applied for data augmenta-
tion. The network is trained using the Adam optimizer with an initial learning
rate of 0.0002 for 500 epochs with batch size 2. The hyperparameters are set as:
α = 0.4.

Performance of Incomplete Multimodal Segmentation. We evaluate
the robustness of our method for incomplete multimodal segmentation. The ab-
sence of a modality is simulated by setting δi to zero. We compare our method
against state-of-the-art approaches, namely RobustSeg [3], RFNet [5], mmFormer
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[25], M3AE [11] and GSS[16]. For a fair comparison, we use the same data split
as in [5] and directly reference the results. As shown in Table 1, our method
significantly outperforms the state-of-the-art methods in the segmentation of all
three tumor parts across most of the 15 possible modality combinations. More-
over, our approach surpasses the large pre-trained M3AE model [11] (Complete:
86.9, Core: 79.1, Enhancing: 61.7) and achieves comparable performance to the
dedicated method GSS [16] (Complete: 87.33, Core: 79.38, Enhancing: 65.54),
which requires 15 models for all modalities combination. Figure 2 illustrates that
our method effectively segments brain tumors across various missing modality
scenarios. Additionally, we also tested the medical foundation model MedSAM
[12] for segmenting the complete tumor. However, even when provided with a
bounding box as a prompt, MedSAM fails to clearly delineate the tumor’s con-
tour, further demonstrating the continued significance of our approach, even in
the era of prevalent foundation models.

Flair T1c T2 T1c T1 Flair T1c+T2 T1c+T1 Flair+T1 T1+T2

T1 T2 Flair+T2 Flair+T1c Flair+T1c
+T1

Flair+T1
+T2

Flair+T1c
+T2

T1c+T1+
T2

Flair+T1c
+T1+T2

Ground 
truth

(c) MedSAM predictions 
with Bounding Box Prompt(a) Input Modalities (b) Segmentation predictions and ground truth

Flair T1c

T1 T2

Fig. 2: Visualization of the input modalities, our predicted segmentation maps,
and MedSAM prediction with bounding box prompt.

Disentanglement Visualization Figure 3 visualizes the anatomical and
modality representations on the unseen BRATS test set. After anatomical con-
trastive learning, modality-invariant anatomical representations are effectively
aligned for each modality, improving the model’s robustness to missing modali-
ties. Additionally, modality-specific representations are successfully learned.

Ablation Study. We investigate the effectiveness of anatomical contrastive
learning, modality contrastive learning, the reconstruction task, and the regu-
larizer as key components of our method. To assess the contribution of each
component, we evaluate the performance of DC-Seg with each component ex-
cluded. In Table 2, we compare the performance of these variants against the
full DC-Seg model, measured by the Dice Similarity Coefficient (DSC), aver-
aged over the 15 possible combinations of input modalities. The results show
that each component contributes to performance improvement across all tumor
subregions.

Performance of WMH Segmentation. We evaluate the performance of
our method for WMH segmentation across various modality combinations. The
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Fig. 3: Visualization of anatomical and modality representations on the unseen
test set of BRATS.

Table 2: Ablation study. Ana and Mod:
Anatomical and modality contrastive learning,
Rec: reconstruction, Reg: Regularizer

Ana Mod Rec Reg Complete Core Enhancing

✓ ✓ ✓ ✓ 87.54 79.63 65.00
× × ✓ ✓ 85.64 76.26 61.83
× ✓ ✓ ✓ 85.81 77.15 62.37
✓ × ✓ ✓ 86.31 77.53 63.41
✓ ✓ × ✓ 86.58 77.54 64.48
✓ ✓ ✓ × 86.38 76.58 63.40

Table 3: Results of WMH Segmenta-
tion. Dice similarity coefficient is em-
ployed for evaluation
Modalities Dice scores

Flair T1 RobustSeg RFNet mmFormer Ours

◦ • 55.56 58.26 53.91 60.42
• ◦ 81.69 82.35 77.29 83.03
• • 82.24 82.66 77.98 82.84
Average 73.16 74.42 69.73 75.43

results, shown in Table 3, highlight the effectiveness of our approach in compar-
ison to state-of-the-art methods. Our method consistently outperforms all other
methods across all modality combinations. Notably, in the case where only the T1
modality is available—where white matter hyperintensities are particularly chal-
lenging to discern—our approach still achieves the highest performance. These
results emphasize the superior performance of our approach in WMH segmenta-
tion besides tumor segmentation, demonstrating its generalizability.

4 Conclusion

We propose DC-Seg, a novel multimodal segmentation framework that jointly
uses anatomical contrastive learning and modality contrastive learning to decom-
pose images into modality-invariant anatomical representations and modality-
specific representations. We demonstrate the superiority of DC-Seg through ex-
tensive experiments on both the BraTS 2020 brain tumor dataset and a private
white matter hyperintensity segmentation dataset, achieving state-of-the-art re-
sults in full-modality scenarios and outperforming existing methods in missing-
modality conditions.
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