
Sequence-Independent Continual Test-Time
Adaptation with Mixture of Incremental
Experts for Cross-Domain Segmentation

Dunyuan Xu1, Yuchen Yuan1, Donghao Zhou1, Xikai Yang1, Jingyang Zhang3,
Jinpeng Li1B, and Pheng-Ann Heng1,2

1 Department of Computer Science and Engineering, The Chinese University of Hong
Kong, Hong Kong, China
jpli21@cse.cuhk.edu.hk

2 Institute of Medical Intelligence and XR, The Chinese University of Hong Kong,
Hong Kong, China

3 The School of Computer Science and Engineering, Southeast University.

Abstract. Continual Test-Time Adaptation (CTTA) adapts a model
pretrained on the source domain to sequentially arriving unlabeled tar-
get domains. However, existing approaches predominantly assume that
model would complete adaptation to all samples within the same target
domain before transitioning to the next domain, deviating from realistic
clinical scenarios where samples from diverse domains arrive stochasti-
cally. Such gradual adaptation strategies suffer from performance drop
under rapid domain shifts and limits their clinical applicability. To ad-
dress this issue, we propose Mixture of Incremental Experts (MoIE),
a lightweight network structure that maps new patterns to established
knowledge. Specifically, MoIE incorporates two key innovations: 1) Pro-
gressive Expert Expansion (PEE), which dynamically adds experts when
existing ones fail to effectively process the current sample, enabling sta-
ble and swift adaptation to target domains; 2) Knowledge-Transfer Ini-
tialization (KTI), which initializes new experts by combining existing
ones through domain-similarity based weights, enabling fast adaptation
to unseen domains while preserving learned knowledge to prevent imme-
diate forgetting. Experiments on two CTTA tasks (prostate and fundus
segmentations) indicate its superiority by achieving SOTA performance
with minimal performance gaps across diverse inference sequences. (Code
available at https://github.com/dyxu-cuhkcse/MoIE)

Keywords: Continual Test-Time Adaptation · Mixture of Experts · Dy-
namic Network.

1 Introduction

Deep learning has achieved remarkable success in medical image segmentation
[3,1]. However, most approaches suffer from performance degradation when de-
ployed on out-of-distribution domains [11], which poses a critical challenge in
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Fig. 1: The problem setting and motivation. (a) Different definitions of two
adaptation sequences; (b) Performance degradation between two settings.

clinical scenarios where data is often collected from heterogeneous and isolated
sources continuously (e.g. different hospitals or imaging devices) [13]. To ad-
dress this issue, Continual Test-Time Adaptation (CTTA) [5,24] has emerged as
a promising paradigm, enabling models to adapt to data stream from continually
shifting target domains. Despite the advances achieved, current CTTA methods
typically follow the Regular Sequence (RS) setting, where the model processes
samples from one domain exhaustively before transitioning to the next domain.

Recent works achieve promising performance under RS through unsupervised
frameworks [15,2,19,20,25] or improving network architectures [21,22,6], such as
teacher-student frameworks [18], lightweight meta-networks [16] and hybrid-rank
adapters [12]. However, in most real clinical scenarios, samples from different do-
mains typically appear randomly during the inference process. We refer to this
setting as Stochastic Sequence (SS), and the differences between RS and SS are
shown in Fig. 1(a). This scenario is becoming increasingly practical with the rise
of telemedicine [7], where centrally deployed models must handle heterogeneous
data streams from multiple institutions, often arriving in a random order. While
practically important, the SS setting is rarely explored in the medical CTTA
field. Therefore, in this paper, we aim to develop a method that can effectively
handle the SS setting while maintaining stable performance in the conventional
RS setting. The model should exhibit the following two key properties: 1) en-
abling stable and swift adaptation to handle rapid and recurring domain shifts,
which is crucial under SS where data continuously arrives from unpredictable
domains; and 2) preventing immediate forgetting of encountered domain pat-
terns during the adaptation process, as the model is forced to make aggressive
updates due to larger domain variations between consecutive samples introduced
in the SS. Unfortunately, existing methods fail to handle the SS setting due to
their gradual adaptation [10] to new domains and poor memory retention [9]
during adaptation. These methods require a long-term process to slowly accu-
mulate knowledge from abundant samples from a newly encountered domain,
which makes them unsuitable for rapid domain shifts under the SS setting and
leads to performance drop compared to RS, as demonstrated in Fig. 1(b).

To address this challenge, we introduce, to the best of our knowledge, the
first sequence-independent CTTA framework for medical image segmentation,
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which achieves stable and superior performance under both RS and SS settings.
This is attributed to two key advancements: 1) a dynamic Mixture of Experts
(MoE)-based network architecture that flexibly aligns target features with the
source domain feature space by introducing only a few additional lightweight sub-
networks (i.e., experts), enabling stable and swift adaptation by mapping newly
encountered patterns to established feature representations; and 2) a domain-
similarity based weighting system that guides both MoE feature ensemble and in-
cremental expert initialization. Experts in MoE layers serve as dedicated memory
units that store encountered knowledge through adaptation. For samples with
fewer feature variations, the system enables self-adaptive knowledge retrieval by
combining features across experts. For samples with large domain shifts, our
weighted initialization integrates existing experts to maintain fast adaptation
while preserving previous knowledge, effectively preventing forgetting. Specifi-
cally, we propose the Mixture of Incremental Experts (MoIE) which comprise
multiple specialized experts, each optimized to handle specific patterns. To en-
sure model flexibility to mitigate the impact of rapid domain shifts, we design
a self-adaptive Progressive Expert Expansion (PEE), which gradually adds new
experts during adaptation when existing experts are insufficient to effectively
process data from a new domain. Given the need for enhancing memorizabil-
ity, we propose an efficient Knowledge-Transfer Initialization (KTI) module to
initialize newly added experts by weighted integration of existing ones, which en-
sures fast adaptation while retaining previous knowledge. Moreover, a warm-up
phase is designed to pretrain experts in MoIE layers before deploying for adapta-
tion, enabling a more reliable start point. We evaluate our method on two CTTA
tasks for prostate and fundus segmentation, showing its superior performance
and robustness compared to other methods under both RS and SS settings.

2 Method

In the CTTA scenario, a model pretrained on the source domain performs con-
tinuous inference while adapting to stochastic sequential online samples from
diverse target domains. Fig. 2(a) illustrates our proposed sequence-independent
CTTA framework that only updates MoIE layers during both warm-up and
adaptation phases by creating additional experts through PEE and initializing
newly added experts via KTI. Our proposed MoIE module effectively provides
the stable and swift adaptation while preserving previous knowledge under both
RS and SS settings. A detailed theoretical visualization is shown in Fig. 2(b).

2.1 Progressive Expert Expansion

We propose a dynamic expert expansion mechanism that adds new experts when
existing ones cannot adequately process the current sample. In contrast to tradi-
tional MoE methods with fixed numbers of experts [10], this adaptive expansion
enables stable feature mapping from target domains to source knowledge.
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Fig. 2: (a) Our proposed Sequence-Independent CTTA framework with Mixture
of Incremental Expert (MoIE) layers. Specifically, we design the Progressive Ex-
pert Expansion (PEE) to dynamically create new experts when existing ones be-
come inadequate (Sec. 2.1) and utilize Knowledge-Transfer Initialization (KTI)
mechanism to initiate newly added experts for rapid convergence (Sec. 2.2). Dur-
ing adaptation, we leverage a selective expansion strategy to minimizes network
modifications thus reducing error accumulation (Sec. 2.3); (b) Our expert expan-
sion strategy aims to map target features to the source domain feature space.

Expert Expansion. We first forward all samples in the source domain through
the pretrained model to get block-wise feature statistics F sour

l = (µsour
l , σsour

l ),
where µsour

l and σsour
l denote the mean and standard deviation. Next, for each

target sample, we obtain its feature statistics from all K experts in every MoIE
layer, where each expert generates F k

l = (µk
l , σ

k
l ), forming a set of K feature

representations for layer l. Then we can obtain the statistical domain-similarity
ρkl for each expert using the cosine-based similarity function δcos:

ρkl := δcos(F
k
l , F

sour
l ) =

µk
l · µsour

l∥∥µk
l

∥∥ · ∥µsour
l ∥

+
σk
l · σsour

l∥∥σk
l

∥∥ · ∥σsour
l ∥

, (1)

Since the MoIE layer aims to better align target features with the source domain
knowledge, the new expert is introduced when existing experts fail to achieve
adequate knowledge alignment. Specifically, we calculate F tar

l and F ens
l as the

target sample’s feature map outputted by the l-th block of the pretrained model
and the ensembled feature after MoIE layer l, respectively. The target-to-source
feature distances for F ens

l and F tar
l are computed by subtracting their domain-

similarity with source domain knowledge as calculated in Eq. (1):

densl = 2− δcos(F
ens
l , F sour

l ), dtarl = 2− δcos(F
tar
l , F sour

l ). (2)

A new expert is created when densl > α · dtarl , where α ∈ (0, 1) is the threshold.
Weighted Feature Ensemble. Having defined the expert expansion strategy
in MoIE, another critical aspect in MoE-based methods is how to determine the
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ensemble strategy for combining outputs from multiple experts. Most existing
MoE strategies employ gated networks to automatically weight expert features
[10,23], yet such mechanism becomes ineffective in CTTA where unlabeled data
provides no supervision for effective model updates, particularly for newly added
parameters when creating additional experts. Therefore, we propose to determine
the ensemble weight wk

l for the k-th expert in layer l (Ek
l ) based on its adaptation

effectiveness. Specifically, the similarity calculated in Eq. (1) actually define each
expert’s capability in aligning target features with source domain knowledge. We
can obtain the domain-similarity based ensemble weights {wk

l }Kk=1 and calculate
the ensembled feature outputted from this MoIE layer (F ens

l ) based on {ρkl }Kk=1:

F ens
l = Zl +

K∑
k=1

wk
l · Ek

l (Zl), {wk
l }Kk=1 = Softmax(ρ1l , ..., ρ

K
l ), (3)

where Zl is the feature from l-th block of pretrain model. Our progressive expert
expansion strategy dynamically adjusts network architecture based on require-
ments, thereby ensuring stable and rapid adaptation to the target sample.

2.2 Knowledge-Transfer Initialization

Although progressive expert expansion adaptively aligns target features with
source domain feature space, newly added experts without proper initialization
are not able to leverage previous learned knowledge stored in existing experts.
Weighted Expert Initialization. To fully utilize previously learned knowl-
edge, we propose to initialize incremental experts by domain-similarity based
aggregation of existing experts, where each expert acts as a dedicated mem-
ory unit of encountered patterns. We formulate the initialization of the newly
added expert as: ΘK+1

l =
∑K

k=1 w
k
l ·Θk

l , where w
k
l represents the expert weights

calculated based on domain-similarity as shown in Eq. (3) and Θk
l represents

the network’s parameters in the k-th expert from MoIE layer l. The ensem-
ble weights indicate existing experts’ effectiveness for processing current sample,
thus experts with higher weights should transfer more knowledge to new experts.
Re-forward with New Experts. To immediately incorporate the effect of
the newly added expert for the current target sample, we re-forward the sample
through this expert to update the ensemble weights from {wk

l }Kk=1 to {wk
l }

K+1
k=1

after expert expansion (similar as Eq. (3)). This re-forward operation is computa-
tionally efficient, requires only forward once through the newly added expert and
updates the softmax and ensemble calculations, making its time consumption
comparable to single forward strategies. To prevent infinite experts expansion,
each MoIE layer adds experts until reaching its maximum capacity (Kmax).

2.3 CTTA Learning Process

We achieve stable adaptation and memorizablity by utilizing the PEE and KTI.
To further improve the effectiveness of our method, we perform a warm-up train-
ing for MoIE layers on the source domain to fully utilize its available labels.
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Table 1: Performance comparison on prostate segmentation task under CTTA
scenario (SS and RS). Bold font denotes the best performance.

Stochastic Sequence (SS) Regular Sequence (RS)
Gap↓

Site B C D E F Avg B C D E F Avg

Dice Similarity Coefficient (DSC) (%)

Source 57.12 80.40 53.85 5.49 0.00 39.37 57.12 80.40 53.85 5.49 00.00 39.37 0.00

BN Adapt 73.43 75.53 74.95 71.62 80.13 75.13 73.07 75.66 75.99 70.79 80.39 75.18 0.05

Tent 51.84 77.63 71.63 74.38 76.26 70.35 71.87 78.25 78.21 73.55 77.13 75.80 5.45

CoTTA 72.80 73.25 73.90 64.99 63.52 69.69 73.82 75.83 78.05 77.56 77.30 76.51 6.82

ECoTTA 73.66 74.11 72.08 70.10 76.67 73.32 76.03 78.90 73.37 73.38 78.55 76.04 2.72

ViDA 63.85 79.04 70.86 69.11 76.86 71.94 75.55 77.90 77.92 77.83 75.38 76.92 4.98

Ours 80.72 79.91 80.52 82.82 85.79 81.95 80.17 77.90 80.81 83.87 83.96 81.34 -0.61

MoIE Initialization. We insert MoIE layers after every encoder block of the
pretrained model. Each MoIE layer starts with two randomly initialized experts
to provide diverse foundational expert bases, ensuring sufficient flexibility to
generate various initialization patterns for newly constructed experts.
Warm-Up Stage. Before deploying the pretrained model for inference on tar-
get domains, we perform a warm-up phase. We freeze all parameters in the
pretrained blocks and train the MoIE layers on the source domain, using a com-
bination loss of Binary Cross-Entropy loss and Dice loss, formulated as:

Lwarm−up = LBCE(Θ) + LDice(Θ), (4)

where Θ means all learnable parameters. During the warm-up phase, we expand
the experts in all MoIE layers for each sample, following the criteria in Eq. (2).
Adaptation Stage. Given that ground truth becomes unavailable during the
adaptation process, we reformulate our learning objective by minimizing the
unsupervised entropy loss and the target-to-source feature distance:

Ladapt = −
∑

p(ŷ) log p(ŷ)−
∑
l

gapl, (5)

where gapl = |densl − α · dtarl | is the feature distance gap calculated by the ab-
solute value between two target-to-source feature distances as formulated in Eq.
(2) and ŷ represents the prediction result of the inference sample. Moreover,
to prevent error accumulation during CTTA [2], we selectively expand only one
MoIE layer for each target sample (i.e. the layer with the largest feature distance
gap among all layers). This selective expansion strategy maximizes the effective-
ness of newly incorporated experts while minimizes structural modifications to
the model, mitigating unwanted error introduced during the CTTA process.

3 Experiments

Dataset. We evaluated our method on two CTTA tasks: 1) prostate MRI seg-
mentation [13] with 116 MRI subjects from six diverse sites: RUNMC (Site A),
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Table 2: Performance comparison on Fundus segmentation task under CTTA
scenario (SS and RS). Bold font denotes the best performance.

Stochastic Sequence (SS) Regular Sequence (RS)
Gap↓

Site B C D E Avg B C D E Avg

Dice Similarity Coefficient (DSC) (%)

Source 65.00 62.50 59.69 60.60 61.95 65.00 62.50 59.69 60.60 61.95 0.00

BN Adapt 67.53 63.24 61.30 65.02 64.27 67.51 63.61 61.32 64.78 64.31 0.04

Tent 65.20 64.24 62.91 62.10 63.61 68.57 65.74 66.50 67.39 67.05 3.44

CoTTA 64.58 63.50 60.80 63.77 63.16 67.68 64.03 65.34 70.17 66.80 3.64

ECoTTA 68.07 60.64 64.43 59.90 63.26 67.59 60.68 68.34 64.64 65.31 2.05

ViDA 76.52 45.84 77.59 56.92 64.22 78.55 49.25 81.11 61.71 67.65 3.43

Ours 71.14 63.56 66.59 63.10 66.10 69.93 64.87 66.57 71.14 68.13 2.03

BMC (Site B), HCRUDB (Site C), UCL (Site D), BIDMC (Site E) and HK
(Site F); 2) fundus segmentation [4] with 1,441 cases from five different public
datasets for optic disc and optic cup segmentation: BinRushed(Site A), Dr-
ishti GS (Site B), Magrabia (Site C), ORIGA (Site D), REFUGE (Site E). For
data pre-processing, images are resized to 256×256 and normalized to [-1, 1].

Experimental Setting. For each task, we pretrained the model on the source
domain (Site A for both prostate and fundus tasks), with the remainder serving
as target domains for adaptation. During inference, we organized the CTTA in
two scenarios: 1) RS, target sites arrive in an Alphabetical order (B→C→D→E→F
for the prostate dataset, B→C→D→E for the fundus dataset); 2) SS, all target
samples from diverse domains were randomly shuffled for inference. We evalu-
ated the model performance using the Dice Score Coefficient (DSC), computed
volume-wise for the prostate task and slice-wise for the fundus task.

Implementation. We used 2D UNet as our segmentation backbone for its scal-
ability [8], each expert in the MoIE layer consist of two fully-connected layers.
All experiments are conducted on an NVIDIA TITAN Xp GPU using Adam
optimizer. We empirically set the threshold α as 0.65. The learning rates were
set to 5×10−4 (batch size 8) for pretraining, 1×10−3 (batch size 4) for warm-up,
and 5×10−3 (batch size 1) for adaptation. Each MoIE layer has the capacity of
4 during warm-up and a maximum capacity of 8 experts during adaptation.

Comparison with SOTA. We compared our Sequence-Independent CTTA
framework with state-of-the-art methods: 1) Source directly inferences the pre-
trained model; 2)BN Adapt [14] only adapts the statistics parameters in Batch
Normalization (BN) layers; 3) TENT [17] updates all parameters in BN layers;
4)CoTTA [18] utilizes the teacher-student framework to generate pseudo-labels;
5) ECoTTA [16] integrates the meta-networks for regularizing features; and 6)
ViDA [12] leverages low-rank and high-rank features for adaptation.

Results on Prostate Task. As presented in Table 1, Source achieves only
39.37% average DSC due to severe domain shifts. BN Adapt maintains robust
performance above 75% DSC under both RS and SS, serving as a strong base-
line. Other approaches (TENT, CoTTA, ECoTTA and ViDA) effectively im-
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prove average DSC scores under RS but degrade significantly under SS with
clear sequence-specific gaps (decreases of 5.45%, 6.82%, 2.72% and 4.98% DSC
respectively), showing limited sequence-related robustness. In contrast, our strat-
egy demonstrates superior and consistent performance, achieving 81.34% average
DSC under RS and 81.95% under SS, surpassing the second-best approach by
4.42% and 6.82% DSC. Notably, our method exhibits robust sequence invariance,
evidenced by a negative performance gap between SS and RS (-0.61% DSC).

Results on Fundus Task. As shown in Table 2, Source achieves higher aver-
age performance than prostate segmentation, indicating smaller domain shifts.
Current adaptation algorithms improve performance under RS but drop signif-
icant under SS, achieving even lower average DSC than the naive BN Adapt.
This highlights their sensitivity to adaptation sequences. Meanwhile, our MoIE
framework maintains the highest average DSC (68.13% under RS and 66.10%
under SS) while achieving the smallest performance gap (2.03% DSC) between
two scenarios. Notably, while demonstrating a comparable performance gap to
ECoTTA, our approach outperforms it with higher average DSC, showing im-
provements of 2.82% under RS and 2.84% under SS. These results proof that
our approach has superior robustness and sequence invariance across tasks.

Ablation Study for Each Component. To validate the effectiveness of each
proposed component, we conducted separate ablation experiments as shown in
Fig. 3(a). We evaluated five configurations: 1) fixed expert count with warm-up;
2) Progressively Expanding Experts (PEE) without Knowledge-Transfer Initial-
ization (KTI) and warm-up; 3) warm-up and PEE but without KTI; 4) PEE
and KTI without warm-up; and 5) the complete integration of all components.
All components yield performance gains in average DSC and maintain sequence
invariance, as evidenced by small performance gaps between SS and RS.

Explanation of Experts Expansion. Each expert within a MoIE layer spe-
cializes in distinct domains to promot diversity and preventing ensemble weight
collapse. In Fig. 3(b), points in the radar graph indicate the ensemble weight rank
of this expert receives across domains. The diverse shapes demonstrate unique
expert characteristics. Fig. 3(c) shows the incremental pattern of new experts
creation, where experts are added only when existing ones cannot effectively
process current samples, maintaining appropriate expansion pace.
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4 Conclusion

This paper identifies that variation on inference sequences in CTTA degrades
the model performance due to rapid domain shifts. To achieve effective and
stable online CTTA, we propose a sequence-independent framework with Mix-
ture of Incremental Experts (MoIE) layers, that incorporates Progressive Expert
Expansion (PEE) with Knowledge-Transfer Initialization (KTI), enabling sta-
ble adaptation while maintaining good memory during adaptation. The broader
impact of our work lies in establishing a stable inference platform for multiple
clinical institutes while preserving data privacy and ensuring timely diagnosis.
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