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Abstract. In medical image segmentation, obtaining pixel-level anno-
tated data is costly. While semi-supervised and weakly-supervised meth-
ods reduce annotation dependence, they still require some pixel-level
annotations. In contrast, leveraging textual descriptions corresponding
to medical images as supervisory information for segmentation is more
promising. Textual descriptions are easier to acquire, as users only need
to provide location and appearance details of lesions. We present TIFC-
Mamba, a Mamba-based architecture for text-image fusion segmenta-
tion. The framework processes images and texts in parallel to establish
cross-modal correspondences, aligning CLIP-encoded features through
contrastive learning. The architecture employs a Mamba-based image
encoder that reduces computational complexity compared to traditional
Transformer models. We propose Mamba Fusion (MF) module inte-
grates text and image features through Bi-Dimension Fusion (BiDF),
enabling both intra-modal refinement and inter-modal interaction while
preserving computational efficiency. Experiments on polyp and skin le-
sion datasets demonstrate competitive performance against fully super-
vised methods and state-of-the-art weakly-supervised approaches. Code
and dataset will be available at https://github.com/PZalio/TIFCMamba.

1 Introduction

Medical image segmentation has become a critical tool for clinical diagnos-
tics. With the development of deep learning, medical image segmentation typi-
cally relies on fully supervised paradigms, which require pixel-level annotations.
However, the annotation of medical images requires expertise, and the cost of
high-quality annotations is substantial, limiting the development of segmenta-
tion models [17, 18, 23]. In recent years, semi-supervised and weakly-supervised
approaches have been proposed to reduce annotation costs. These methods,
compared to fully-supervised approaches, still require some pixel-level labels for
training, but alleviate the reliance on comprehensive annotations [10,14]. Medi-
cal text annotations, however, are easier to obtain, as users only need to provide
⋆ Wenhui Huang is the corresponding author.
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lesion locations and descriptions. This makes medical text a promising solution
for supervision in medical image segmentation [28,35].

Transformer-based attention mechanisms have significantly advanced multi-
modal medical image segmentation by improving the fusion of image and text
information [9,24]. However, the quadratic computational and memory require-
ments of full attention models pose challenges, especially when processing large
images and lengthy text descriptions [15, 26]. State Space Models (SSM), like
Mamba [13] and its variant Vmamba [20], show promise due to their linear com-
plexity and global receptive fields. However, SSMs are underexplored for multi-
modal fusion, primarily focusing on multi-modal image fusion. ReMamba [33]
suggests that traditional token concatenation methods are ineffective for Mamba,
as its linear structure limits token interactions, leading to insufficient fusion and
reduced performance.

In the text-supervised paradigm, only the semantic text corresponding to
the image is used as supervisory information without any pixel-level mask an-
notations, and the training of the model is driven by the semantic or feature
alignment of the text-image [16, 25]. The approach of image-text alignment has
been widely adopted in many works. Specifically, image-text alignment methods
typically use an image encoder and a text encoder, aligning the two into a joint
embedding space. In this way, zero-sample passing techniques can be used to
allow both encoders to generate segmented outputs without specialised anno-
tation [29]. This approach creates inconsistencies between training and testing.
During training, image-text alignment is based on the entire image’s semantic
features, but during testing, the goal is to align text semantics with specific
image regions. This misalignment may lead to suboptimal performance, as the
model may not learn the relationship between local text semantics and image
regions during training [19,36].

To address these challenges, we propose TIFCMamba, a novel text-supervised
segmentation framework based on Mamba. The key contributions of our ap-
proach are as follows: 1) We introduce TIFCMamba, using medical text supervi-
sion and multi-modal contrastive learning to reduce annotation cost while avoid-
ing the high computational cost of Transformer-based models. 2) We propose the
Mamba Fusion Block with a bi-dimensional fusion mechanism, enhancing text-
image feature interactions and addressing token fusion limitations in Mamba. 3)
We introduce an image-text mutual alignment mechanism for precise alignment
between image and text segments during training and testing.

2 Method

2.1 Preliminary of Mamba

The Structured State Space Model (SSM) [12, 13] from control systems theory
transforms an input sequence x(t) ∈ R into an output y(t) ∈ R via a hidden
state h(t) ∈ RN , governed by:

h′(t) = Ah(t) +Bx(t), y(t) = CTh(t) +Dx(t), (1)
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Fig. 1: TIFCMamba framework. Image and text inputs are processed by separate
segmenters to generate masks and extract target regions. After random filling of
non-target regions, a CLIP encoder aligns image-text features for text-supervised
training of the image segmenter ΦI .

where A ∈ RN×N is the state matrix, B ∈ RN the input matrix, C ∈ RN the
output matrix, and D ∈ R is a skip connection (hereafter omitted, i.e., D = 0).

Since continuous-time systems are not directly amenable to digital compu-
tation, we discretize with time step ∆:

ht = Aht−1 +Bxt, yt = C
T
ht, (2)

with A = exp(∆A), B ≈ B, and C = C.
In the S4 [13] model, parameters (A,B,C, ∆) are learned via gradient descent

but remain independent of the input, limiting contextual modeling. To address
this, Mamba introduces the S6 mechanism, which makes B, C, and ∆ input-
dependent. Specifically, for an input sequence x ∈ RB×L×C (with batch size B,
sequence length L, and feature dimension C), the parameters are computed as:

B = Linear(x) ∈ RB×L×N ,C = Linear(x) ∈ RB×L×N , (3)

∆ = SoftPlus
(
∆̃+ Linear(x)

)
∈ RB×L×C . (4)

Here, Linear(·) denotes a linear transformation and SoftPlus(·) ensures non-
negativity for ∆; ∆̃ is a learnable bias. This input-dependent design enhances
the model’s adaptability and its ability to capture contextual information.

2.2 Overall Framework

The core challenge of text-supervised segmentation is establishing semantic cor-
respondences between images and text. As shown in Fig. 1, our TIFCMamba
framework operates on a medical image-text dataset D = {(XI

1 , X
T
1 ), (X

I
2 , X

T
2 ),

· · · , (XI
i , X

T
i ), · · · (XI

n, X
T
n )}, where images lack pixel-level labels and are only

annotated with semantic descriptions. We jointly train an image segmenter ΦI

and a text segmenter ΦT using contrastive learning to align the segmented re-
gions across modalities.
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Fig. 2: BiDF module. Firstly, the different modal interactions of image-text are
fused, then the three modal information is spliced in the channel dimension, and
finally the different modalities are fully interacted by channel and space fusion
in sequence.

For each image-text pair (XI
i , X

T
i ), a keyword selector [5] extracts keywords

WT from XT
i (e.g., “A red polyp left side”). The image segmenter ΦI uses XI

i

and WT to generate an image mask MI , while the text segmenter ΦT processes
XT

i and WT to produce a text mask MT . The masked image Î is obtained by
cropping XI with MI and randomly padding the background, and similarly, a
completed text T̂ is constructed using MT . Finally, CLIP [21]’s image encoder EI

and text encoder ET extract features from Î and T̂ , respectively, and contrastive
learning aligns their representations.

2.3 Image-Text Segmentation

Mamba-Based Image Segmenter. As shown in Fig. 1, our image segmenter
centers on the Mamba Fusion Block, which integrates visual and textual modali-
ties. Intermediate features from each block are skip-connected to the decoder to
produce the final segmentation mask. The fusion block comprises two modules.
First, the Visual State Space (VSS) [20]module treats image features as token
sequences and employs a 2D-Selective-Scan (SS2D) [20] mechanism that scans
features in four directions to capture long-range spatial dependencies. Second,
the Bi-Dimension Fusion (BiDF) module seeks to fuse text features with image
features. It calculates the cross-correlation between the two modalitie: image
features and text features, and subsequently propagates this information to the
features of each image patch.

BiDF Module. As illustrated in Fig. 2(a), the BiDF module operates in two
stages. In the first stage, the BiDF module first expands the text features FT

into F̂T ∈ Rh×w×CT , then fuses the image features FI with the expanded text
features F̂T to obtain FIT ∈ Rh×w×CIT . This process allows each image patch
to incorporate textual information. Finally, the three features are concatenated
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along the channel dimension. The process is formalized as follows:

Fcat = Concate
(
FI , Conv(FIWI · (F̂TWT )

T ), F̂T

)
, (5)

where WI ∈ RCI×C0 and WT ∈ RCT×C0 are learnable parameters. FIWI ·
(F̂TWT )

T ∈ Rh×w is transformed via a 1 × 1 convolution to obtain FIT ∈
Rh×w×CIT .

The concatenated features Fcat are then fused in two stages: spatial fusion
(using the VSS module’s 2D selective scan) followed by channel fusion (with a
State Space Model for a 1D scan), resulting in the final fused feature Ffuse. As
shown in Fig. 2(c), In the second stage, to enhance cross-modal interactions, we
design two fusion mechanisms: one along the channel dimension and one along
the spatial dimension. For the channel dimension, we adopt the 1D selective scan
from VMamba, while for the spatial dimension, we use the 2D selective scan.
The process is formalized as follows:

Ffuse = Spatial(Channel(Fcat)). (6)

Text Segmenter. Text segmenter ΦT that processes an input text XT
i and

a set of noun {Nj}Jj=1 to generate a noun-specific word mask. A CLIP text
encoder [21] augmented with two learnable multi-head attention layers extracts
word features xt = ẼT (X

T
i ) ∈ RL×C , where L is the number of tokens and C

the feature dimension. For the given noun Nj (with embedding nj ∈ RC), word-
specific logits are computed as ℓj = w · (xt ·nj)+b, with learnable parameters w
and b and a dot product computed per token. Each word is assumed to belong
either to one of the J noun-associated segments or to none; accordingly, a softmax
over the J segments plus an extra “none” category yields the word mask MT =
[mt

i]
L
i=1 defined by

mt
i =

exp(ℓj,i)

1 +
∑J

j′=1 exp(ℓj′,i)
, i = 1, . . . , L. (7)

A pseudo-label vector p ∈ {0, 1}L is then generated by setting pi = 1 if word
i attains the highest probability for one of the J segments and pi = 0 other-
wise; the text segmentation loss Ltxt is defined as the cross-entropy between
MT and p, guiding ΦT to correctly segment the text. To align image and text
modalities, our framework leverages contrastive learning between image regions
and corresponding text segments. Specifically, CLIP encoders extract region em-
beddings eI = EI(Î) from image regions Î and word embeddings eT = ET (T̂ )
from text segments T̂ . For a batch of B triplets (each consisting of an image, its
paired text, and a selected noun), we compute a similarity matrix S ∈ RB×B ,
where each element Si,j is the cosine similarity between eIi and eTj . A symmetric
InfoNCE [21] loss is then applied:

Lalign = − 1

2B

B∑
i=1

[
log

exp(Si,i/τ)∑B
j=1 exp(Si,j/τ)

+ log
exp(Si,i/τ)∑B
j=1 exp(Sj,i/τ)

]
, (8)
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Table 1: Comparison with the SOTA method on the ClinicDB, ColonDB,
LaribPolypDB, and ISIC2017 datasets, containing two fully supervised (FS) and
six weakly supervised methods.

Method ClinicDB ColonDB LaribPolypDB ISIC2017 Supervised
ModemDice mIoU mDice mIoU mDice mIoU mDice mIoU

ResUNet (2020) [11] 81.33 77.40 83.62 75.78 79.88 76.47 83.52 78.06 FS
SwinUnet-T (2021) [6] 86.64 82.24 85.90 83.76 88.43 80.05 85.47 81.35 FS
WeakPolyp (2023) [30] 84.30 81.56 86.67 79.89 82.79 80.60 85.41 82.67 Box

TCL (2023) [7] 84.35 80.89 85.02 81.67 85.58 78.32 85.46 81.90 Text
SimSeg (2023) [34] 85.17 80.38 84.92 80.16 85.60 79.73 87.28 82.49 Text

SimTxtSeg (2024) [32] 86.38 81.72 85.18 80.95 86.43 80.30 86.51 80.94 Text
CoDe (2024) [31] 86.98 82.45 86.58 81.45 87.35 81.07 87.09 83.51 Text
XCoOp (2024) [4] 86.55 82.43 85.73 80.18 88.31 80.61 86.36 81.52 Text

TIFCMamba-T 87.50 81.53 87.38 80.93 87.67 81.09 87.20 83.13 Text
TIFCMamba-S 88.07 83.93 87.67 81.45 87.81 81.77 87.79 83.59 Text
TIFCMamba-B 88.24 84.22 87.74 82.56 88.92 82.43 87.95 83.76 Text

with a learnable temperature parameter τ ; note that even if the same noun
is selected multiple times, the corresponding regions and text segments remain
distinct, ensuring effective alignment.

Image and Text Completer. In order to avoid image-text blank regions
from adversely affecting the encoded feature alignment when performing Clip
image-text encoding, we introduced image-text completer respectively. We avoid
the unfavorable effect by randomly complementing pixels or words in regions
other than the image-text target region with the complemented image Î and
text T̂ , respectively: Î = XI ·MI +FillI(1−MI), T̂ = XT ·MT +FillT (1−MT ).

Dual-Modal Contrastive Alignment Loss. For the image segmenter, we
use the loss function Limg of TCL [7], which relies only on image-text pairs for
training. The overall loss is a weighted sum of the image segmentation loss Limg,
text segmentation loss Ltxt, and the contrastive loss Lalign:

LDMCA = λimgLimg + λtxtLtxt + λalignLalign, (9)

where we set the loss coefficients to λimg = 1.0, λtxt = 1.0, λalign = 0.5.

3 Experiments

3.1 Experiment Setting

Datasets. We conducted experiments on polyp medical imaging datasets, aug-
mented with textual cues to improve segmentation performance. For polyp seg-
mentation, three publicly available colonoscopy datasets were used: CVC-ClinicDB
[2], CVC-ColonDB [27], ETIS-LaribPolypDB [22], and ISIC2017 [3]. We used
GPT-4 [1] to generate descriptions of the images in the dataset and adapted
some of the textual descriptions, including the location, appearance, bounding
box, and the proportion of the image occupied by the lesion, and made adjust-
ments to some of the textual descriptions. The textual description of the dataset
can be found in our code.
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Fig. 3: Qualitative comparison of segmentation results with different models un-
der text supervision, and the effect of different text descriptions on the segmen-
tation results of TIFCMamba-T.

Implementation details. Performance was evaluated using the mean Inter-
section over Union (mIoU) and mean Dice coefficient. All datasets were split into
training and testing sets with a 7:3 ratio, each image is resized to 480×480. We
designed three image segmenter variants of our TIFCMamba structure based on
VMamba. The training process consisted of two stages, firstly initial pre-training
on the CC3M [8] dataset using the Adam optimizer (with two randomly se-
lected nouns per image-text pair), followed by fine-tuning on the polyp and skin
dataset with the text branch parameters frozen. Experiments were executed on
four NVIDIA 3090 GPUs with a batch size of 4 and a learning rate of 1× 10−5.

3.2 Results and Analysis

In Table 1, we compare the top five existing weakly-supervised models with two
fully-supervised models. Among them, WeakPolyp [30] utilizes bounding boxes
as supervision, while SimTxtSeg [32], TCL [7], CoDe [31], and XCoOp [4] employ
text as supervision. Compared to fully-supervised methods, which entail higher
annotation costs, our approach achieves comparable segmentation performance.
When compared to other state-of-the-art weakly-supervised segmentation mod-
els, our model demonstrates improvements in mDice and mIoU by +1.26% and
+1.77%, +1.16% and +0.89%, +0.61% and +1.36%, and +0.67% and +0.25%
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Table 2: Quantitative analy-
sis of TIFCMamba-B on fusion
modes.

Fusion Mode Polyp ISIC2017

Spatial Channel mDice mDice

× × 63.57 58.39
✓ × 72.36 70.95
× ✓ 79.86 77.49
✓ ✓ 88.24 87.95

Model Size

20M 40M 80M

TIFCMamba

(ours)

SwinUNet

Vmamba

Fig. 4: Comparison of model efficiency on
Polyp’s three datasets. The SwinUnet is a
purely Transformer-based model.

on the ClinicDB, ColonDB, LaribPolypDB and ISIC2017 datasets, respectively.
A qualitative analysis of the segmentation results compared to the five text-
supervised models is illustrated in Fig. 3.

3.3 Ablation Study

Impact of textual descriptions. We compared the effect of using different
text descriptions on the segmentation performance of our model. As shown in
Fig. 3, different text descriptions have a large impact on the segmentation results,
especially when the text is inaccurately describing the position of the foreground
in terms of orientation.In addition when the text description is too redundant it
also affects the segmentation performance of the model.
Impact of fusion mode. We compared the effect of the cross-modal feature
fusion approach we used on the segmentation performance when image-text fea-
ture fusion is used. As shown in Table 2, it can be seen that when using Spatial
fusion and Channel fusion alone respectively, both have a positive effect on the
model performance, but channel fusion contributes more to the segmentation
performance improvement.
Comparison on model efficiency. We compared the model efficiency of our
model with VMamba, SwinUnet on polyp datasets. Since our model uses an ad-
ditional text segmenter, we only compared the efficiency of our image segmenter
with the above two models during the testing phase. As shown in Fig. 4, our
TIFCMamba-T achieves the best balance of mDice vs. MACs and Model Size.

4 Discussion and Conclusion

In this paper, we propose a textual weakly supervised medical image segmenta-
tion model based on Mamba, which implements the Mamba structure in cross-
modal fusion of medical images. The Mamba architecture avoids the problem
of over-complexity of the attention mechanism in Transformer, and at the same
time, we use easily-accessible text descriptions as the weakly-supervised super-
visory information, and achieve segmentation performance comparable to that
of full supervision on the dataset of polyps and skin lesions, which signifies the
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promising prospect of using text supervision in medical image segmentation.
However, our method still has problems such as relying on more accurate text
descriptions, the complexity of the cross-modal fusion module, and the fact that
the image Decoder does not consider cross-modal fusion features. In the future,
we will work on solving these problems.
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