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Abstract. Abnormal structures in multi-modality medical images often
lead to heterogeneous heavy-tailed distributions. However, traditional
models, especially those relying on Gaussian distributions, struggle to
effectively capture these outliers. To address this, we propose BayeSMM,
a novel framework that leverages Student’s t distribution mixture mod-
els (SMM) to simultaneously perform registration and segmentation for
misaligned multi-modality medical images. Specifically, we construct a
Bayesian Student’s t mixture model incorporating the heavy-tailed na-
ture of the Student’s t distribution and develop variational inference to
optimize the model. Guided by variational inference, we design a novel
deep learning architecture that performs registration and segmentation
jointly. We demonstrate the effectiveness of BayeSMM with experiments
on the MS-CMR dataset, where the results show superior performance
compared to existing combined computing methods, and yield enhanced
robustness under the simulated heavy-tailed setting. The code is avail-
able at https://github.com/HenryLau7/BayeSMM.
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1 Introduction

Jointly performing registration and segmentation, also termed as, combined
computing [22], could benefit each other, and have gained popularity in multi-
modality scenarios [2, 4, 13, 16, 22]. Early methods addressed this problem via
Maximum a Posteriori (MAP) estimation within probabilistic frameworks [20,
21]. Bayesian frameworks [1, 6] established principled generative models that
jointly perform segmentation and registration. By using the conditional inde-
pendence of multi-modality image intensity distribution given the tissue la-
bel, [4, 13, 22] have the advantage of computational efficiency, in a Bayesian
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Fig. 1. (a) Top: In cardiac MR images, scar and edema may appear, influencing the
distribution of anatomical structures. Bottom: The distribution histogram illustrates
the heavy-tailed nature of an LGE modality image. (b) The Student’s t distribution,
with its heavier tail, is more robust to outliers, such as those caused by abnormal
structures, exemplified by the LV tissue in the LGE modality.

framework. Deep learning-based methods substantially improved the perfor-
mance [11, 19]. However, they only focus on localized pathological structures,
such as tumors, limiting their applicability in holistic segmentation scenarios.

An unresolved challenge in multi-modality medical imaging is the heavy-
tailed distributions arising from abnormal structures [8]. In cardiac MR images,
as illustrated in Fig. 1(a), scars in LGE (Late Gadolinium Enhanced) and edema
in T2-weighted MR are rare yet significant pathological features resulting in ex-
treme values in intensity distributions, while they are not consistent in different
modalities. This could influence learning processes and model fitting [7,15]. Pre-
vious parametric models, which typically rely on Gaussian distributions, fail to
capture these outliers.

Motivated by the heavy-tailed nature of Student’s t distribution [18], which
is more robust to model medical images with abnormal structures, as shown
in Fig. 1(b), we propose BayeSMM, a novel approach that models misaligned
multi-modality medical images with a Student’s t mixture model, which could
model multi-modality heterogeneous abnormal outliers, to perform registration
and segmentation in an end-to-end unified framework. In BayeSMM, we employ
variational inference [3] and propose a deep computation framework to estimate
the variables. This combined approach allows us to effectively learn from mis-
aligned multi-modality data and enhance its robustness.

Our key contributions are as follows: (1) We are the first to introduce a
method for modeling multi-modality medical images using a Student’s t mixture
model, which is robustness with abnormal outliers. (2) We employ variational
inference and propose a novel deep learning framework that simultaneously per-
forms both image registration and segmentation. (3) Our experimental results
demonstrate the superiority of BayeSMM in registration and segmentation, and
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we explore the heavy-tailed nature of Student’s t distribution through a visual-
ization analysis for our defined outlier-detection variable.

2 Methodology

This work introduces a robust Bayesian Student’s t Mixture Model (BayeSMM)
for the simultaneous registration and segmentation of multi-modality medical im-
ages, with a particular focus on addressing the heavy-tail problem often encoun-
tered in medical image analysis. The proposed framework consists of two main
components: (1) statistical modeling for the multi-modality medical images using
the Student’s t distribution, as illustrated in Fig. 2.1(a), and (2) a deep learning-
based registration and segmentation framework for estimating posteriors of the
variables introduced in statistical modeling, as depicted in Fig. 2.1(b). At step
(1), we model the multi-modality images via a multivariate BayeSMM, incor-
porating a class variable z, its prior probability π, a defined outlier-detection
variable u, the mean µ and inverse-variance λ variables. These variables are
governed by conjugate priors, determining the observed images I. We define u
as the outlier-detection variable, which could adaptively adjust the variance to
enhance the robustness. Given observed multi-modality images I, we propose an
alternating approach consisting of learning-based inference and analytical com-
putation, to estimate posteriors at step (2). This alternating approach separates
dependencies between variables, enabling effective estimation by leveraging the
representational power of neural networks.

2.1 Robust Bayesian Student’s t Mixture Model

Mixture Model. Let I = {Ii}Ni=1 denotes the set of N observed images, all
acquired from the same subject but in different imaging modalities. Following
the framework proposed by [22], we assume the existence of a common latent
space, Ω ⊂ Rd, from which all image modalities are generated, where d rep-
resents the spatial dimensionality of the images. The anatomical structure of
the image is modeled using a multinomial variable z = {zx}x∈Ω, where each
zx = [zx,1, . . . , zx,K ]

⊤ is a one-hot vector, with zx,k = 1 indicating that the pixel
x belongs to the k-th tissue class, with K classes in total. For a given modality
i, we model the anatomical structure as a finite mixture model [14], where the
likelihood of an image pixel Ix,i conditioned on the tissue label zx is given by

p(Ix,i | z,θ) =
K∏

k=1

p(Ix,i | θi,k)zx,k , (1)

where θ represents the parameters of the mixtures, with a corresponding multi-
nomial prior for the tissue label distribution p(zx | π) =

∏K
k=1 π

zx,k

k , where
π represents the label proportions, with

∑
k πk = 1. When the tissue label

of a pixel is known, the intensities from different modalities become condi-
tionally independent [4], and the likelihood of the image pixel simplifies to
p(Ix | zx,k = 1,θ) =

∏
i p(Ix,i | zx,k = 1,θi).
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Fig. 2. Overview of the BayeSMM framework. (a) The probabilistic graphical model
(PGM) of BayeSMM, illustrating statistical modeling of multi-modality images. (b)
The deep learning framework for BayeSMM, consisting of two stages: the registration
stage and the segmentation stage, sharing an encoder. The warped images after regis-
tration go through segmentation network and other branches for estimating posteriors.

Student’s t Mixture Model. To address the heavy-tail issue that commonly
arises in medical image analysis, we introduce the Student’s t distribution, with
an additional hyperparameter ν0, i.e., degree of freedom, enhancing its flexibility,
to model the intensity distributions of each tissue class. It could be derived by
compounding a Gaussian distribution with an outlier-detection variable u, which
is itself distributed according to a gamma distribution. Integrating over u yields
the Student’s t distribution, expressed as follows,

St(Ix,i | zx,k = 1, θk,i) =

∫
N

(
Ix,i | µk,i,

1

ux,i,kλk,i

)
G(ux,i,k |

ν0
k,i

2
,
ν0
k,i

2
) dux,i,k, (2)

where N represents a normal distribution and G a Gamma distribution. The
prior parameter ν0 is manually chosen, and its posterior is implicitly updated
through approximate inference.
Hierarchical Bayesian Modeling. Given the hierarchical nature of the Stu-
dent’s t distribution derived from Eq.(2), we model the intensity data within a
PGM, as shown in Fig. 2.1(a). The likelihood of the observed images I, given the
tissue class variable z, outlier-detection variable u, mean µ, and inverse variance
λ, is given by,

p(I | z,u,µ,λ) =
∏
x∈Ω

∏
i

∏
k

N
(
Ix,i | µi,k, (ux,i,kλi,k)

−1
)zx,k

, (3)

where {µi,k,ui,k, λi,k} are the parameters θi,k in Eq.(1), representing the pa-
rameters of Student’s t distribution.

As for the prior selection, we place a Normal-Gamma prior on the mean µi,k

and inverse variance λi,k, and a Dirichlet prior is placed on the label proportions
π. Conjugate priors are chosen to simplify posterior estimation. This hierarchi-
cal probabilistic model enables the integration of intensity values from multiple
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modalities, accounting for the complex distributions of medical image intensities
while effectively addressing the heavy-tail issue inherent in such data.

2.2 Variational Inference

In this section, we present a variational inference approach to estimate the vari-
ables of SMM, given the observed image set I. We perform maximum a posteriori
(MAP) estimation for the set of variables Ψ = {z,π,µ,λ,u}.

Since the exact inference of the posterior distribution p(Ψ | I) is intractable,
we employ a variational Bayesian (VB) method [5] to approximate the posterior.
To ensure tractable inference with efficient updates under conjugate priors, we
adopt the mean-field assumption [3], which assumes that the variables in Ψ are
mutually independent. Thus, we factorize the variational distribution as

q(Ψ) = q(z)q(π)q(µ)q(λ)q(u). (4)

Since we assign the conjugate priors, their variational posteriors would have the
same forms as given priors. And they have a closed-form solution derived by,

ln q∗ (Ψj) = EΨ−j
[ln p(I,Ψ)] + const. (5)

where Ψ−j represents all variables except Ψ j . Variables π and λ are computed
explicitly by Eq. (5).

To optimize other variational variables, i.e., µ,λ,u, we minimize the Kullback-
Leibler (KL) divergence between the variational distribution q(Ψ) and the true
posterior p(Ψ | I), which results in the following optimization problem,

min
q(µ,λ,u)

Lvar = KL(q(Ψ) | p(Ψ))− E[ln p(I | Ψ)]. (6)

This optimization leads to the following variational loss, which corresponds to
the individual components of the lower bound, Lvar = LI +Lu +Lµ +Lz. Each
of these components is derived through the variational formulation.

2.3 Deep Computing and Training Strategy

This section describes the network architecture used to achieve variational in-
ference and the training strategy for medical image combined computing. As
shown in Fig. 2.1(b), it consists of two stages, i.e., registration and segmetna-
tion. We adopt an Encoder-Decoder architecture, with the SwinUNETR [9] as
the backbone, which consists of multiple levels of convolutional blocks to gener-
ate multi-level feature maps, with residual connections between the encoder and
decoder to facilitate information flow. The encoder is shared across registration
and segmentation to extract features.
Registration Stage. The registration stage begins by fusing the extracted fea-
tures from each modality through an abstraction layer that computes the first
and second moments of the feature maps [10]. The fused feature maps are then



6 Liu et al.

passed through the registration decoder, Dreg, which predicts the spatial trans-
formation in the form of dense displacement fields ϕ = {ϕi} for each modality.
Segmentation Stage. Following the registration step, the estimated transfor-
mations ϕ are applied to the images to register them to the common space. The
warped images are then fed into a segmentation network to estimate the vari-
ational variables (or their posterior parameters). Specifically, for class variable
z ∼ Mult(γ̂), where posterior parameters of the Multinomial distribution γ̂x,k
represents the predicted class probability, and for the outlier-detection variable
û, we employ decoders Dseg and DU to estimate, respectively. For the posterior
parameters m̂, ρ̂ of the mean values µ, we use an extractor block consisting of
convolutional and linear layers to estimate them.
Training Strategy. We train the BayeSMM by balancing the cross-entropy loss
LCE , the variational loss Lvar and the regularization term Lreg computed by
bending energy [17] as L = LCE + λ1Lvar + λ2Lreg, where λ1, λ2 are balanc-
ing weights that determines the contribution of each loss. Cross-entropy loss is
expressed as,

LCE =
∑
i∈I

1

|Ω|
∑
x∈Ω

−yx,i log γ̂x,i, (7)

where I is the index set of modalities with labels, y represents the ground
truth. This means that BayeSMM could address the weakly supervised scenario,
where the labels of certain modalities are provided. This combined loss function
ensures that the network learns both the segmentation task and the variational
posterior inference effectively, facilitating the joint optimization of registration
and segmentation tasks within the same framework.

3 Experiments

3.1 Experiment Setups

Dataset. We used a cardiac dataset to evaluate BayeSMM. The MS-CMR
dataset provides multi-modality cardiac MR images for 45 patients [22]. Each
patient was scanned with three sequences: LGE, bSSFP, and T2-weighted MR,
containing 3-5 short-axis slices. We resampled the images to 1 × 1mm2 resolu-
tion, and center-cropped to 256×256 pixels, background suppression and z-score
normalization was employed. For all experiments, a three-fold cross-validation
strategy was employed.
Baseline methods. We compared BayeSMM with several baselines. DGR uses
a generic framework where no segmentation masks are provided, reducing the
problem to deep groupwise registration with neural network estimation. MvMM [22]
uses iterative optimization for combined computing. X -metric [13] estimates us-
ing a deep neural network. For fairness of comparison, all methods employed the
same settings.
Implementation details. We implemented BayeSMM using a SwinUNETR
backbone for encoder-decoders. The model was trained for 50 epochs using the
Adam optimizer [12] with an initial learning rate of 3 × 10−4, and a batch size
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Table 1. Comparison of joint registration and segmentation performance on multi-
modality cardiac MRI. Results show DSC for registration (Reg DSC) and segmentation
(Seg DSC) across three sequences under two scenarios: without affine preprocessing
(top) and with affine preprocessing (bottom). BayeSMM variants are evaluated with
synthetic noise levels (0%/50%/80%), demonstrating robustness compared to ablated
version (w/o) and baselines. Best results in each column are bolded.

Method Noise Reg DSC Seg DSC

LGE bSSFP T2

Before Affine Pre-process
Init 0 34.34± 0.71 - - -
DGR 0 67.93± 0.34 - - -
MvMM [22] 0 34.14± 0.62 26.83± 0.51 36.48± 2.03 34.07± 3.47
X -metric [13] 0 55.65± 3.93 66.60± 4.25 73.00± 1.07 71.55± 1.43
BayeSMM(w/o) 0 65.31± 0.87 73.98± 2.36 72.94± 2.21 74.26± 1.04
BayeSMM 0 66.09± 0.57 76.39± 1.35 74.53± 1.65 76.12± 1.14

After Affine Pre-process
Init 0 76.08± 0.63 - - -
DGR 0 79.53± 0.84 - - -
MvMM [22] 0 75.00± 0.59 62.32± 1.18 60.83± 1.09 59.18± 2.65
X -metric [13] 0 81.19± 0.95 85.50± 1.24 86.40± 0.98 85.38± 0.86

BayeSMM(w/o) 80% 76.97± 0.62 83.96± 0.87 83.51± 0.87 80.52± 0.90
BayeSMM(w/o) 50% 78.00± 0.90 84.66± 1.03 84.75± 0.70 82.15± 0.91
BayeSMM(w/o) 0 81.02± 0.89 85.60± 0.82 86.56± 0.62 85.78± 1.26

BayeSMM 80% 76.99± 0.63 84.44± 0.57 83.81± 0.35 81.05± 1.36
BayeSMM 50% 78.06± 0.93 84.81± 1.07 84.26± 0.55 82.81± 0.30
BayeSMM 0 80.93± 0.85 85.62± 0.78 86.66± 0.32 86.27± 1.00

of 1. The coefficient of variational loss and regularization were set as λ1 = 1 and
λ2 = 1. Network parameters for the two tasks were optimized alternately, with
each task being optimized for one iteration step at a time. Before joint training,
we pretrained the model for 50 epochs with fixed outlier-detection variables (u)
to stabilize feature learning. All experiments used PyTorch on an NVIDIA RTX
3090 GPU. For fairness of comparison, all methods employed the same settings.

3.2 Results

Evaluation of Combined Computing. To evaluate BayeSMM’s capability for
joint registration and segmentation, we conducted comprehensive experiments
under two clinically relevant scenarios: (1) severe misalignment without pre-
processing and (2) affine-preprocessed inputs. As shown in Table 1, BayeSMM
exhibits superior performance in both settings. Compared to the X -metric, we
observed improvements in segmentation performance across both scenarios, par-
ticularly in the absence of affine pre-registration, achieving a improve of 18.7%.
This suggests that our two-stage iterative framework can effectively handle such
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Fig. 3. Illustration of two cases. Top row: Warped multi-modality images. Bottom
row: Visualization of the outlier-detection variable uk, where k corresponds to the true
class label. The red arrows and circles highlight the abnormal regions (e.g., scars and
edema) and their corresponding heavy-tailed regions in uk (lighter areas with high u
values). The consistency between these regions demonstrates that BayeSMM is capable
of identifying abnormal areas, which contributes to its robustness.

terrible misalignments through alternating registration and segmentation refine-
ment. On the other hand, with affine preprocessing, BayeSMM performs slightly
worse than the X -metric in registration. This may be due to the fact that
multi-modality segmentations in X -metric benefits from simultaneous process-
ing across modalities, whereas BayeSMM provides a single segmentation map
defined in the common space, which may influence the subsequent registration
performance supervised by likelihood.
Ablation Study: Robustness Evaluation. To validate our outlier-detection
mechanism, we conducted controlled experiments introducing synthetic abnor-
malities by replacing 50% and 80% of pixels with extreme intensities (below
10-th or above 90-th percentile of tissue histograms). We compared BayeSMM
against its ablated variant, BayeSMM(w/o), where the outlier variable u is fixed
to 1, reducing the distribution to a standard Gaussian distribution (referred to
Eq. 2). As shown in Table 1, while both setting’s performance degrades with
increasing noise, BayeSMM demonstrates superior robustness. At 50% noise in-
tensity, it maintains a Seg DSC of 82.81 for T2 images, compared to 82.15 for the
ablated model. For 80% noise, with BayeSMM achieving lower degradation com-
pared with BayeSMM(w/o). This results demonstrate our probabilistic outlier
modeling effectively recognize outliers through robust Student’s t distribution.
Visualization analysis. To better understand the impact of the outlier-detection
variable u, we visualize its estimated values to explore how it influences BayeSMM’s
handling of outliers (abnormal regions). To make it obvious, we adjusted the
brightness. As illustrated in Fig. 3, the red circle highlights the abnormal re-
gions in the image, which correspond to the heavy-tailed region in the uk map.
These regions overlap consistently, indicating that BayeSMM could automati-
cally identify abnormal areas, such as scars or edema, and be more tolerant of
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them. This feature enhances the robustness of BayeSMM, enabling it to handle
outliers effectively.

4 Conclusion

In this work, we proposed a robust statistical framework for medical image regis-
tration and segmentation, termed as BayeSMM. Specifically, we incorporate the
heavy-tailed nature of the Student’s t distribution and develop variational infer-
ence to optimize the model. Guided by variational inference, we design a novel
deep learning architecture that performs registration and segmentation jointly.
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