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Abstract. Biomedical literature serves as a critical repository for cutting-
edge research achievements, encompassing substantial statistically vali-
dated biological knowledge. However, the dispersed storage and unstruc-
tured characteristics of such literature significantly hinder manual ac-
quisition efficiency while increasing error susceptibility. To address these
challenges, this study proposes an intelligent literature knowledge mining
platform. Three core innovations distinguish this research: (1) The devel-
opment of an extensible literature collection-parsing-structuring frame-
work based on a "literature tree" architecture (ECPS-LitTree), which
facilitates HTML dynamic report generation and full-cycle data man-
agement, offering a novel solution for cross-source heterogeneous litera-
ture knowledge aggregation; (2) The design of a configurable requirement
customization framework (CRC) that combines named entity recogni-
tion (NER) technology with user-configurable mining templates to en-
able personalized knowledge extraction; (3) The implementation of an
integrated online platform, providing comprehensive services including
visual analytics, interactive search, and batch data export functionali-
ties. Experimental validation demonstrates that the platform surpasses
existing mainstream tools in literature retrieval success rate, process-
ing efficiency, and knowledge extraction volume. The platform’s flexible
configurability exhibits broad applicability across multiple biomedical
domains, offering researchers a reliable intelligent tool for knowledge dis-
covery. The Configurable Platform is publicly and freely accessible at
https://medseeker.genemed.tech/.
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Fig. 1. Research Motivation: (a) Literature Mining Challenges; (b) Limitations of Ex-
isting Solutions (e.g., PubTator3); (c) Proposed Technical Framework with Key Tech-
nical Features (1-5).

1 Introduction

Biomedical literature forms the core knowledge base for biological and clinical
sciences, providing validated cross-domain evidence [1]. The exponential pub-
lication growth—particularly in genomics [2]—presents two major challenges:
inefficient integration of massive data and complexity in extracting knowledge
from heterogeneous sources (see Fig. 1(a)). Precision medicine tasks like clinical
variant pathogenicity classification [3| require automated tools to reliably extract
evidence from dispersed literature. Concurrently, emerging high-impact discov-
eries demand intelligent systems capable of processing multimodal, cross-domain
biomedical knowledge.

In genetic variant assessment, standards such as those established by the
American College of Medical Genetics and Genomics (ACMG) provide crit-
ical frameworks for evidence-based clinical genetics practices [5,6]. However,
applying criteria like PS2/PS3 requires laborious cross-referencing of multi-
ple databases [7,15,16,17] and exhaustive analysis of peer-reviewed English lit-
erature. This manual workflow introduces subjective biases, frequently lead-
ing to inconsistent diagnostic reports and thereby impeding large-scale pre-
cision medicine initiatives [8]. Specialized tools address specific needs: Inter-
Var [9] enables semi-automated ACMG/AMP classification; ANNOVAR [10]
extracts key variant features; PubTator 3.0 [11,12,13] annotates literature (see
Fig. 1(b)); GPDminer [14] identifies variant-disease links. Integrated platforms
like REVEL [18] (with MutPred [19,20] and FATHMM |[21]) assess missense
variants, whereas AutoPVS1 [22] automates high-throughput PVS1 evaluations.
Despite their utility, these fragmented tools lack system-level interoperability
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to comprehensively extract insights from heterogeneous literature for clinical
curation.

To address challenges in biomedical literature knowledge management, we
provide a multimodal-driven, configurable platform for literature knowledge min-
ing, delivering an end-to-end workflow from acquisition to extraction and inte-
grating features surpassing existing systems (see Fig. 1(c)). Our contributions
include two frameworks: 1) the Extensible Collection-Parsing-Structuring frame-
work (ECPS-LitTree), which leverages an enhanced LayoutParser model [24] for
multimodal parsing that converts PDFs into semi-structured JSON with text
and image substructures. Unlike traditional methods [23], it automates literature
collection through integration with PubMed Central and other databases while
supporting user-uploaded PDFs, and introduces semantic-guided image segmen-
tation and text extraction optimization for hierarchical storage of document
elements via a literature tree architecture; and 2) the Configurable Requirement
Customization (CRC) framework, which unites three established techniques in
named entity recognition research: knowledge base-driven enumeration match-
ing (e.g., ICD-10, HG38), regular expression-based extraction, and context-aware
deep learning models. All benefiting from the continuous development of NER
technology [29,30,31,32,33]. The CRC framework contributes a novel template
mechanism that combines user-defined regular expressions with database entities
to dynamically specify entity types (e.g., genes, diseases) and granular attributes,
thereby overcoming the rigidity of conventional biomedical NER systems and en-
hancing complex semantic pattern recognition.

2 Methods

2.1 Design and implementation

The proposed biomedical literature mining platform integrates four modules:
ECPS-LitTree for automated collection and multimodal parsing, CRC for dy-
namic entity filtering, Data Engine executing knowledge discovery via hybrid
pattern mining (enumeration/rule-based/DL), and Interactive Visualizer for
multidimensional evidence presentation. The adaptive workflow follows:

V(E(R(P(D)))), if D € U (user-uploaded)
I= (1)
V(E(R(P(C’(]D)))))), if D € S (database-sourced)

where: D denotes multi-source heterogeneous literature input comprising I (user-
uploaded PDF documents) and S (database-sourced literature, e.g., PubMed
Central); C(-) represents the Paper Collector for automated database acquisi-
tion when D € S; P(-) indicates the Parser generating structured Literature
Tree T'; R(-) corresponds to the CRC Framework producing customized tree T";
E(-) signifies the Extractor mining information from 7”; and V(-) embodies the
Visualizer presenting final results through interactive dashboards.
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2.2 FECPS-LitTree Framework

The ECPS-LitTree framework establishes a systematic pipeline for automated
literature acquisition and multimodal parsing through open biomedical database
integration. The workflow initiates dual data ingestion pathways: direct process-
ing of user-uploaded PDFs or programmatic retrieval from integrated open-access
repositories including PubMed Central, Europe PMC, and institutional reposi-
tories, formalized as:

D, =C(D) (D’s format is PDF) (2)

This multi-source strategy extends beyond conventional single-database scrap-
ing methods [23], expanding coverage to 94.6% of open-source biomedical lit-
erature types (CC-BY/NIH compliant) validated through NIH resource audits.
The adaptive parsing function:

P(D.) = LayoutParser (Stext(Raxy) + Simage(Rzxy)) (3)

where LayoutParser denotes the LayoutParser model [24], Sext and Simage rep-
resent processes that involve annotations and content extraction on the text and
image parts of the PDF interface within the region R, respectively, and R,
specifies the PDF page region, with « being the width and y being the height
of the region. dynamically balances semantic confidence through multi-objective
optimization, the Parser’s annotation effect is demonstrated in Fig. 2A.
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Fig. 2. Schematic Diagram of the Literature-Parser. A: Schematic representation of
document page segmentation annotation frames; B: Using mature Python parsing li-
braries to cross-reference and complement the results of text recognition for each sec-
tion; C: "Literature Tree" Structure.
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Our content extraction system integrates vision-based Detectron2 segmenta-
tion (domain-adapted weights) with Python multi-format parsing (PDF/XML/
HTML fallback) (see Fig. 2B(i-ii)), achieving O(n'®) time complexity for n
document elements. This dual-channel approach ensures cross-format stability
through complementary graphical detection and raw text recovery mechanisms.

The enhanced Layout-Parser builds domain-specific literature trees 7" with
structural constraints: Parent(ROOT) = {Title < Abstract < Sentence} for
text hierarchy, and Parent(Figures) = {Picture < (URL @ FigText)} for visual
assets, where < denotes containment and @ parallel attributes (see Fig. 2C). The
resultant literature tree T integrates these components through lattice-based
fusion:

T = P(D.) + {Parent(ROOT), Parent(Figures)} (4)

where + denotes the combination of literature content and structure. This multi-
modal integration generating FAIR-compliant JSON outputs that support fed-
erated literature mining.

2.3 CRC Framework

The CRC framework enables customizable biomedical entity definition and se-
mantic filtering through template-driven configuration, formalized as:

> B Uszl (Regex;, N Ontology,,) (user-configured) (5)
rarget Ucecdefault (Regex,. N Ontology,.) (default)

where K denotes the number of user-defined regex-ontology pairs, with Regex;
representing pattern matching rules and Ontology,, specifying biomedical vocab-
ularies (e.g., HG38 for genomes, ICD-10 for diseases). The default set Cqefaurs con-
tains 10 atomic small templates: Gene, Transcript Number, Reference Genome
Version, Variant, Family Chart Information, Experimental Result, Experimen-
tal Information, Disease, Species, and Phenotypic Data. Each small template
combines:

T .1 = Regex, N Ontology, x Color; x Notes; (6)

Core Logic Annotation
(syntax + semantics) (custom fields)
where N requires dual pattern-ontology validation, and x denotes independent
parameter dimensions. The configured literature tree is generated by:

M
T/ = gconﬁg (T; 7Iarge) Where ﬂarge - @ S‘f{f;n (7)
m=1

combines small templates through editable @ operations that enable: (1) ontology-
constrained pattern matching using structured vocabularies, and (2) free-form
regex annotation with flexible text patterns. The & operator ensures valid tem-
plate composition while preserving annotation consistency across combined el-
ements. The semantic filtering mechanism employs a structure-aware relevance
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scoring approach that integrates literature tree T' through:

-
Relevance(e, T) = Softmax <W> (8)
Vd
where ¢(T) = GAT(T) encodes the literature tree using graph attention net-
works, Q. = MLP(BERT(e)) combines entity embeddings with contextual fea-
tures, d is the dimension of ¢(T"), and the superscript T denotes matrix transposi-
tion (distinct from the literature tree T'). Entities are retained if Relevance(e, T') >
6 = 0.4 and e € ValidPath(T'), where ValidPath(7T) denotes semantically coher-
ent paths in the literature tree.

2.4 Data Mining
The data mining module extracts evidence through three synergistic strategies:
E(T") = Eepum(T") U Ep1e(T") U Eq(T") 9)

The multi-pattern matching framework combines the Enumeration Recognition
and Regular Expressions, where Eepum(T”) = AhoCorasick(T”, {CHPO, HG38})
achieves precise entity matching with O(n+m) time complexity for n nodes and
m patterns, while non-enumerable entities are processed through FE,..(7") =
(JRegExMatch(7”, {Regex Patterns}). For deep learning recognition, the neural
pipeline Eq(T") = BioBERT(7”) || BERN2(7T”) || AIONER(7”) implements
parallel execution, where the operator | denotes independent model [4,25,26]
execution to prevent prediction interference during joint inference.

2.5 Visualization of Results

The visualization module transforms structured literature data 7' and mining
results F(7") into interactive reports through:

I'=V(T'", B(T")) = hyis(T", E(T")) (10)

where hyis(-) implements a dual-pane interface (see Fig. 3): Left Pane displays
categorical entity statistics (document navigation) and Right Pane provides in-
teractive filters (entity-type toggles, frequency distributions, evidence metrics).
Additional features include bookmarking (paragraph/sentence archival) and Ex-
cel export of filtered reports.

3 Experiments and Results

3.1 Experimental Setup

Our experiments implemented § = 0.4 (chosen as an optimal balance between
precision and recall within the 0.3 — 0.7 range) relevance threshold filtering
(Relevance(e) > 0.4) with the AIONER-based framework Eq,(77) = AIONER(T”)
for biomedical entity recognition. Data combined open-source repositories and
user-uploaded PDFs, with controlled variation across trials using distinct PMC-
OA and institutional literature corpora to validate methodological robustness.
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LOGO (O Submit [ Report @ Template © Favorites © Holp] e English
rP anguag
@ Menu Options Language
SHOW SYSTEM BOCONCEFTS
(2] 2.1, Introduction © Literature umtent
e . Originally identified by Barakat et alin 1977, hyy ss, and renal dysplasia (HDR)
Sections | gnuome omm #146255), aso referred to a5 b . is an uncommon auto-somal dominant condition
[1)Hasegawa et al.ZInamed this comt hdri d cases have varied with orwithout gat Category
de \cy, confusing the classification of the condition,although the trio of conditions defines the phenotype [3].Patients a (h()l )
withHDR syndrome have a wide range of clinical characteristics withHDR syndrome have a wide range of clinical
characteristics.The mus\plevz\enl clinical trait is sensorineural deafness (93%), with numerousexpressions used to
characterize hypoparati sm (87%), renaldysp (61%). and other conditions [4)
Genes causing hdr syndrome are found on the of ) [2).Deletion-mapping
studies con-ducted by Van Esch et al.confirmed that the gene causing the mutation SHOW USER BIOCONCEPTS
in hdr syndrome is located on in the (5).GATAS s a zinc-finger e
transcription factorfamily member that binds to the (A/T1) gatas is a zinc-finger s N
transcription factorfamily member that binds to the (A/T1).As illustrated in Fig.1, gata3 ! :
comprises two n-terminal trans-activating domains (TA1 and TA2) and two c-terminal zinc-finger do-mains znf1 and
znf2)Currently, >90 gata3 mutations linked toboth sp di nd dr  syndrome have been found

{61.GATA3haploinsafficiency has been proposed s an underlying mechanism [7] gata3haploinsuffciency hes been proposed
as an underlying mechanism (7).

Herein, we describe a novel heterozygous frameshift mutation ofGATA3 at up) that is linked to a Chinese
family with hdrsyndrome and that predates the appearance of the which produces a premature stop at
amino acid residue 302, causing theloss of the zinc-finger structure of the protein.To understand the role ofGATA3, we

examined the three-d I (3D) structure, and activity of this mutant gatas.

Corresponding author at: Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital,
Tianjin 300052, China.E-mail address: cuijingqiu@tmu.edu.cn (. Cui)ANccale vieottt TN e e A

Statistic

3.2 and methods

Fig. 3. Screenshot of the Report Viewing Interface: (1) Menu Options; (2) Article
Sections; (3) Literature content Annotation Effects; (4) Language Switching; (5) An-
notation Options of Category; (6) Entity Information Statistics.

3.2 Functional Comparison and Identification Accuracy

Table 1 summarizes a feature comparison between our platform and other state-
of-the-art text mining tools (PubTator3.0 [13], GPDminer [14], PubTerm [27],
and PubMedKB [28]). Notably, our platform uniquely supports dynamic require-
ment configuration and advanced result visualization.

Table 1. Function comparison with text mining tools.

Tool NER Literature Visualization of Requirement
Upload the original configuration
paper

v v v
— v —

Our Platform
PubTator3.0 [13]
GPDminer [14]
PubTerm [27]
PubMedKB [28]

SNENESENEN
\

3.3 Report Generation Stability

We evaluated report generation stability through three controlled experiments
using different submission methods: direct PMID submission, PMID submission
via Excel, and direct PDF submission. Overall success rates were 87%, 82%, and
100% respectively. The average report generation times (including all processing
stages) were 3.72 minutes per literature for PMID, 3.65 minutes for PMID via
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Excel, and 3.35 minutes for PDF submission (see Fig. 4A). These results confirm
that, while all methods are efficient, direct PDF submission is optimal due to
bypassing the literature collection stage.

3.4 Paper Collection and Data Mining Volume Case Study

A large-scale simulation using 800 biomedical articles (retrieved via PMID)
demonstrated the superior performance of our platform over PubTator 3.0. As
shown in Fig. 4B, our platform acquired 758 full-text articles (with 42 articles
yielding no results), achieving a full-text acquisition rate of 94.75% compared to
PubTator 3.0’s 42% (with the majority as abstracts).And Fig. 4C(i) and C(ii)
Comparison of different types of information mining volume under the same
condition. This comprehensive evaluation demonstrates that the platform’s lit-
erature acquisition capability, knowledge extraction capacity, and reliability are
positioned at the forefront of the field.
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Fig. 4. (A) Average time per literature for each stage and overall; (B) Article retrieval
and collection comparison between our platform and PubTator 3.0; (C-i) Overall data
mining volume comparison; (C-ii) Detailed category-wise data mining volume.

4 Conclusion

This study presents a robust biomedical literature mining platform integrat-
ing multimodal retrieval, adaptive parsing, configurable entity recognition, and
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interactive visualization. Experimental evaluations demonstrate superior perfor-
mance in complex entity extraction tasks, outperforming existing tools through
enhanced configurability, operational flexibility, and notable efficiency gains. Fu-
ture work will extend to semantic relationship mining while integrating sys-
tematic evaluation and application of Large Language Models (LLMs), aiming
to further strengthen unstructured knowledge discovery within optimized text
mining pipelines.
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