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Abstract. The Gleason Grade Group is the gold standard for diag-
nosing and prognosticating prostate cancer. Existing multiple instance
learning (MIL) methods for Grade Group classification have overlooked
domain-specific knowledge that the Grade Group is collaboratively de-
termined by different Gleason Patterns, limiting their performance. In
this study, we propose DSPA-MIL, a Dual Selective Gleason Pattern-
Aware MIL model for patient-level Grade Group prediction. Our ap-
proach incorporates a dual selective instance aggregation strategy, com-
bining selective aggregator tokens and patch-level Gleason pattern expert
concept-guided aggregation. Furthermore, to effectively utilize patient-
level Grade Group expert concepts, we introduce a knowledge-distillation-
based framework for training and inference, enabling accurate Grade
Group score prediction. Experimental results on five datasets compris-
ing 10,809 whole slide images (WSIs) and 1,133 tissue microarray (TMA)
images demonstrate the superiority of our method, which outperforms
state-of-the-art (SOTA) MIL approaches. The code is available at https:
//github. com/AlexNmSED/DSPA-MIL.

Keywords: Prostate cancer - Selective aggregation - Expert concepts.

1 Introduction

Prostate cancer is one of the most prevalent malignancies among men worldwide.
The Gleason grading system is the gold standard for the pathological diagnosis
and prognosis of prostate cancer [17]. Originally proposed by Donald F. Glea-
son [8], this system consists of two components: the Gleason Pattern and the
Gleason Score, which together characterize tumor growth heterogeneity and the
degree of cellular differentiation in biopsy samples. Unlike conventional grading
systems that focus on the highest-grade component, the Gleason grading system
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determines the final Gleason Score (ranging from 3+3 to 5+5) by summing the
two most predominant patterns. Based on the correlation between the Gleason
Score and patient prognosis, the International Society of Urological Pathology
(ISUP) introduced the Grade Group (GG, 0-5), a simplified prostate cancer
grading system [7]. Due to the complexity and subjectivity involved in Grade
Group assignment by pathologists, developing Al models to automate this diag-
nostic process is highly desirable.

Previous studies have demonstrated that deep learning-based MIL approaches
for WSI analysis can effectively predict the ISUP Grade Group at the patient
level. For instance, Marini et al. [16] showed that semi-supervised learning (SSL)
significantly improves prostate histopathology image classification by leveraging
heterogeneous datasets and limited localized annotations. Their findings high-
light the potential of SSL in medical image analysis, reducing the reliance on
large-scale annotated datasets while maintaining high classification accuracy.
Bazargani et al. [2] introduced MS-RGCN, which models WSIs not as inde-
pendent instance sets but as a graph convolutional network (GCN) to capture
spatial and hierarchical relationships between instances, thereby enhancing MIL-
based classification performance. Additionally, several studies [3,13,21,18] have
explored MIL approaches for ISUP Grade Group classification in prostate cancer
using only slide-level labels, significantly reducing annotation costs while main-
taining SOTA performance. However, existing MIL methods overlook domain-
specific knowledge in Grade Group prediction, where the final Grade Group is
determined by summing the two most predominant Gleason Patterns, limiting
their predictive performance.

We hypothesize that patient-level Grade Group prediction should be formu-
lated as an ordinal prediction task based on the aggregation of Gleason Pattern
features, where distinct Gleason Pattern regions collectively determine the fi-
nal diagnosis. This characteristic challenges traditional MIL frameworks, which
struggle to directly learn discriminative bag-level features for adjacent Grade
Groups. Conventional MIL methods aggregate all instance features within a WSI
indiscriminately, resulting in a global bag-level representation that lacks sensitiv-
ity to the hierarchical structure of Gleason Patterns. Although attention-based
MIL (AB-MIL) [10] applies an attention mechanism to weight instance features
based on their contributions to bag-level prediction, it remains limited in captur-
ing the collaborative relationships among Gleason Pattern features. This limita-
tion arises from its inability to extract independent Gleason Pattern representa-
tions. Existing MIL methods typically generate a single bag-level representation
for classification, reducing inter-class separability between adjacent categories.
We propose that an effective feature aggregation strategy should involve the
aggregation of different Gleason Pattern features within a WSI, addressing the
challenge of collaborative prediction across different instance patterns.

To address the challenges of patient-level Grade Group prediction, we propose
a DSPA-MIL framework, which selectively aggregates instance features from
WSIs into distinct Gleason Patterns while modeling their collaborative relation-
ships for patient-level prediction. Our key contributions are as follows: (1) We
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propose dual selective aggregation strategies for learning Gleason Patterns. First,
we employ three learnable aggregator tokens, each responsible for aggregating
instance features corresponding to a specific Gleason Pattern. Second, we lever-
age a patch-level, expert-concept-guided instance aggregation strategy, where we
compute the similarity between patch-level instance features and concept embed-
dings to obtain distinct representations for three Gleason Patterns. (2) Utilizing
two sets of Gleason Pattern features, we design a knowledge-distillation-based
training and inference framework, guided by patient-level Grade Group expert
concepts, to enhance model prediction. (3) Extensive experiments on five pub-
licly available datasets demonstrate that DSPA-MIL outperforms SOTA MIL
methods in Grade Group prediction. An ablation study further verifies the effi-
cacy of our dual selective pattern aggregation strategy.

2 Methods

Given a WSI bag with N patch instances, denoted as Bys; = {z; }é\’:l, our objec-
tive is to predict the patient-level ISUP Grade Group Y, where 0 < Y < 5. No-
tably, only patient-level Grade Group labels and corresponding expert concepts
are available in the training data, while instance-level labels remain unavailable.
Fig. 1 provides an overview of our DSPA-MIL model for Grade Group pre-
diction, which comprises three modules: selective Gleason Pattern aggregation,
expert concept-based similarity aggregation, and knowledge-distillation-based

prediction. The details of the DSPA-MIL model are elaborated below.

Selective Gleason Pattern Aggregation. Unlike existing MIL approaches,
we introduce multiple selective Gleason Pattern aggregator tokens within the
Transformer to address the collaborative challenges posed by different patterns
in Grade Group prediction. Each token is designed to effectively aggregate in-
stance features corresponding to its respective Gleason Pattern within the WSI
bag. Specifically, each selective aggregator token, denoted as Ty, k € {3,4,5},
represents a distinct Gleason Pattern. Consequently, the bag-level representa-
tions, formed through the collaboration of these selective aggregator tokens,
enhance discriminability between adjacent Grade Group scores. Fig. 1(a) illus-
trates the selective Gleason Pattern aggregator transformer.

Given a bag B, the instance features of image patches {x; }5\;1 are first
extracted using the foundation model UNI [5], yielding a feature set E = {e/}}_ .
These extracted features, along with the selective aggregator tokens T} (i.e.,
T5,T4,T5), are then fed into the Pattern Aggregator Transformer (PAT). Within
PAT, self-attention is computed using queries, keys, and values derived from the
token set T' and the instance feature set E, as expressed as follows:

q1,---,4dN+3 = QueTY(T7 E)
k3ak47k5 = Key(T) (1)
V1,...,0Nn+3 = Value(T, E).
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Fig. 1. Overview of our proposed DSPA-MIL framework. (a) Selective Gleason Pat-
tern aggregation. (b) Expert concept-based similarity aggregation, and knowledge-
distillation-based Grade Group prediction.

Since our objective is to aggregate instance features corresponding to differ-
ent Gleason Patterns, we introduce a masking mechanism that prevents atten-
tion interactions among selective aggregator tokens Tj. The aggregated Gleason
pattern-aware features are then computed as follows:

N+3

- exp (k1)
ak:kal'M?)—'vl; (2)
=1 Zr:l exp (Skr)

where sy, sk, represent the scale-dot attention scores between the keys and
queries calculated based on the dot similarity [22]. The mask element my; is set
to 0 for other selective aggregator tokens and 1 otherwise. After selective aggre-
gation, different Gleason pattern representations are refined through a second
LayerNorm followed by an MLP. PAT finally outputs the aggregated features
for different Gleason Patterns, denoted as Ay, k € {3,4,5}, which collaborate to
predict the patient-level Grade Group.

Ezxpert Concept-based Similarity Aggregation. Considering that the learn-
able patterns {Ak}2:3 extracted by PAT may not fully capture the disease com-
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plexity, we introduce a complementary instance feature aggregation strategy
guided by patch-level Gleason Pattern expert concepts. These expert concepts,
denoted as TF . k € {3,4,5}, are derived from the prostate cancer diagnostic
guidelines of the National Comprehensive Cancer Network. Each Gleason Pat-
tern consists of M (i.e., M=4) instance-level concepts. To obtain instance-level
concept representations for each Gleason Pattern, we utilize the text encoder
Fieqt (+) of a CLIP-based pathology vision-language foundation model [9], as
expressed by:

Pczkns = Fte:nt (Tzljzs)v (3)

where PCE . € RM*4 denotes the instance-level concept embeddings for Glea-
son Pattern k. The aggregation of Gleason Pattern k, guided by the concept

embeddings PCF . is then formulated as:

ms?

k k \T
W = Softmax (E (PCE ) ) , "
szns = (Wllils)T - E,
where W} . € RV*M represents the similarity scores between instances and

instance-level expert concepts, which serve as aggregation weights. Hi’jls € RMxd
denotes the concept-specific features for Gleason Pattern k. Finally, average
pooling is applied to derive the final representation of Gleason Pattern k, denoted

as A), k € {3,4,5}.

Knowledge-Distillation-based Grade Group Prediction. We concatenate
Gleason Patterns Ay and Aj, to construct Py, for Grade Group prediction. Since
the Gleason score is determined by summing the two most predominant patterns,
we design a knowledge-distillation-based training inference framework to model
this collaborative relationship and assign appropriate weights to {Pk}i:3~ This
framework is guided by patient-level Grade Group expert concept embedding.
During training, we hypothesize that patient-level Grade Group expert concept
provides supervision for weighting the three predictive patterns {Pk}izg. How-
ever, since expert concepts are unavailable during inference, we propose a hy-
brid training-inference approach that integrates Teacher-Student learning with
Pseudo-Text Generation (PTG). This approach consists of three components: a
Teacher-Gate branch, a Student-Gate branch with PTG, and the correspond-
ing Knowledge-Alignment process. By leveraging true expert concepts as prior
knowledge during training, the model learns to generate WSI-level pseudo-text
embeddings from {Pk}Z::s, enabling gated fusion during inference.

Specifically, during training, the Teacher-Gate branch utilizes the true expert
concept to generate gating weights Wy € R? as follows:

Wr = softmax(WCr + b), (5)

where O € R'™? represents the true expert concept embedding encoded by

CLIP, and W € R3*4 denotes learnable parameters. Wy = [w:(,,T), wé(lT), wéT)] in-

dicates the weight distribution across patterns {Pk}izg. By performing element-
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wise multiplication between {Pk}iz?) and the gating weights, followed by sum-
mation, we obtain the global feature representation zp from the Teacher branch:

2T = wéT)Pg + ’wé(lT)P4 + wéT)Pg,. (6)
This representation, z7, is then passed through the Teacher classifier MLP to
produce logits L.

For the Student branch with PTG, the patterns {Pk}zz3 are first concate-
nated to form X € R3?. Then, X is passed through a learnable MLP network,
which maps it to a pseudo-text embedding Cp, with the same dimension as Cr.
Subsequently, Cp is fed into the gating network of the Student branch to generate
the gating weights Wg = [wgs), wfls), wés)]. These weights are used to adaptively
aggregate the patterns {Pk}ZZB, producing the global feature representation for
the Student branch:

zg = wéS)Pg + wiS)P4 + wéS)Pg,. (7)

Finally, zg is passed through the Student classifier MLP to produce logits Lg.

To enable the Student branch to learn the prior knowledge encoded in the true
expert concepts, we design the following distillation loss terms: Gating Weight
Distillation K L(Wr, Wg), Output Distribution Distillation KL(Lr,Lg), and
Text Embedding Alignment Loss AL(Cr,Cp), using the L2 norm. Additionally,
to better constrain the learning of {Pk}‘zzg and ensure they effectively represent
distinct Gleason Patterns, we extend the ISUP Grade Group rule into three
binary classification tasks Oy € {0,1}, k € {3,4,5}. Here, Pattern P} is used to
predict the presence of Gleason Pattern k. For example, if the Grade Group is
1 derived from Gleason Pattern 3+3, then, O3 = 1,04 = 0,05 = 0. Our overall
loss function is computed as:

£ =MSE (gm, Y) + MSE <g<s>, Y)

+ )\gating KL (WSa WT) + )\logits KL (LT, LS) (8)

5
+ /\text_align ||OT - CPHQ + /\cls_o (Z CE (Oka Ok)) /37
k=3

where Agating; Mogitss Atext align, @81d Acls o are hyperparameters used to balance
the contributions of different loss terms, with values set to 0.1, 0.1, 0.1, and 0.01,
respectively. During the inference phase, the Teacher branch is not invoked, and
no real text information is required. The Grade Group prediction is performed
solely based on {Pk}izg and the Student branch.

3 Experiments and Results

3.1 Dataset and Experimental Settings

We evaluate the proposed model on five publicly available prostate cancer datasets,
comprising both TMA and WSI types. Table 1 summarizes these datasets and
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the corresponding training-test split. Notably, the Karolinska and Radboud
datasets originate from distinct centers within the PANDA challenge dataset [4].
For the Radboud dataset, we performed quality control and removed slices con-
taining ink artifacts, resulting in a final set of 4,506 slices. Model evaluation
follows a five-fold cross-validation strategy on the training set, with final perfor-
mance reported as the average test set results. We train DSPA-MIL and base-
line models on four NVIDIA Tesla A100 GPUs using AdamW as the optimizer.
Training is conducted for 50 epochs with early stopping, a learning rate of 2e-4,
and a weight decay of le-5. Model performance is assessed using the quadratic
weighted kappa (QWK) as the primary metric and the area under the receiver
operating characteristic curve (AUC) as a secondary measure. QWK takes into
account both small and large disagreements between predicted and actual scores,
making it the primary metric for Grade Group prediction.

Table 1. Dataset summary and training-test split.

Datasets Type Train Test MAG Benign GG1 GG2 GG3 GG4 GG5 Total
Karolinska [4] WSI v 20x 1921 1812 666 317 481 251 5448
Radboud [4] WSI 20x 922 676 592 805 670 841 4506
TCGA-PRAD WSI 20 20 44 126 92 65 123 449
SICAPv2 [19] WSI 40x 139 22 94 38 27 85 406
Zurich [1] TMA 40x 115 277 83 50 220 141 886
Vancouver [11] TMA 40x 43 49 34 31 66 23 247

SSEEENENEN

3.2 Comparative Results

Comparison with SOTA MIL models. We compare the DSPA-MIL model
with several SOTA MIL models: AB-MIL [10], CLAM-SB [15], CLAM-MB [15],
FR-MIL [6], RRT-MIL [20], WIKG-MIL [12], AMD-MIL [14], DGR-MIL [23],
SPA-MIL (our DSPA-MIL with only learnable tokens). Table 2 presents a com-
parative analysis of AUC and QWK performance across four test datasets. The
results show that our DSPA-MIL consistently outperforms all competing models
in the primary evaluation metric, QWK. Notably, DSPA-MIL achieves up to a
44% improvement over the SOTA models, with the most significant gain observed
on the SICAPv2 dataset when compared to RRT-MIL. Excluding RRT-MIL,
DSPA-MIL demonstrates a 6.8% increase in QWK on Radboud dataset, along
with improvements of 12.7% and 11.0% on SICAPv2 and Vancouver datasets, re-
spectively, compared to the second worst results. DSPA-MIL achieves the highest
performance in both AUC and QWK on the TCGA-PRAD dataset, with im-
provements of 5.1% and 10.3%, respectively, over FR-MIL [6]. CLAM-based MIL
approaches show the closest performance to DSPA-MIL across all four datasets,
particularly on Radboud, where CLAM-SB achieves a QWK of 79.6%.

In comparison, all models perform suboptimally on Vancouver dataset; how-
ever, our model still attains the highest QWK score of 69.5%. This relatively
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poor performance can be attributed to inaccurate labels in both the Zurich and
Vancouver datasets, where patient-level Grade Group annotations are unavail-
able. Instead, pixel-level Gleason Pattern annotations from different pathologists
were provided. A voting-based aggregation strategy was employed to refine Glea-
son Pattern labels, which were then mapped to Grade Groups using the ISUP
grading system. Despite these challenges, DSPA-MIL demonstrates strong noise
resistance, indicating the effectiveness of our dual selective aggregation strategy.
Overall, the comparative results underscore the generalizability of DSPA-MIL
across various data types, validating its adaptability and robustness.

Comparison with relevant studies. Table 2 also lists the results of MS-
RGCN [2] and AG-GCN [3], sourced from their original publications, evaluated
under the same dataset settings. It is observed that DSPA-MIL achieves QWK
improvements of 23.1% and 5.7% over MS-RGCN and AG-GCN on the Rad-
boud and TCGA-PRAD datasets, respectively. Notably, while MS-RGCN uti-
lizes a multi-resolution setting, DSPA-MIL, relying solely on a single resolution,
achieves significantly better results, owing to the dual selective Gleason Pattern-
aware learning.

Table 2. Comparison with SOTA MIL methods, where an * indicates results sourced
from the original publications.

Radboud TCGA-PRAD SICAPv2 Vancouver
AUC(%) QWK(%)|AUC(%) QWK(%)|AUC(%) QWK (%)|AUC(%) QWK (%)
MS-RGCN [2]* 78.842.73 H57.7T425 - -
AG-GCN [3]* - - - 68.5 - - - -
AB-MIL [10] 809424 784405 80.610.5 67.7421 84.8412 65.6471 722421 66.7424
CLAM-SB [15] 83.042.6 79.6112 812106 689422 845416 688116 73.6414 66.7431
CLAM-MB [15] 81.1408 781422 82.0403 727420 81.8441 71.3433 744421 66.7424
FR-MIL [6] 85.541.5 79.2432 779420 63.9+42 84.2479 65541115 681427 60.3+4.7
RRT-MIL [20] 70.2409 453116 699115 39.0434 614122 2931101 63.611.9 40.8147
WIKG-MIL [12] | 84.440.9 78.3+3.7 80.6+06 71.542.4 86.741.7 60.6495 73.641.7 65.542.3
AMD-MIL [14] 821434 77.1435 80.0404 714430 849414 712498 66.541.3 585131
DGR-MIL [23] 83.541.2 74.0425 80.1422 69.341.2 85.0+26 61.6+105 73.841.1 64.2434
SPA-MIL 83.641.6 772435 T7.841.4 677453 843114 68.8+78 T73.0420 69.0422
DSPA-MIL (Ours)| 84.54+0.9 80.841.2 83.041.8 74.243.7 84.6423 73.340.5 72.0+1.8 69.540.4

Methods

Ablation experiment. Our DSPA-MIL was finally compared to SPA-MIL,
which relies solely on learnable tokens. It is observed in Table 2 that our dual se-
lective aggregation strategy achieves marked improvements of 3.6%, 6.5%, 4.5%,
and 0.5% in QWK, respectively. This demonstrates that incorporating an expert
concept-guided feature aggregation strategy as a complementary mechanism ef-
fectively enhances the model’s ability to learn complex diagnostic tasks.
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4 Conclusion

We propose a patient-level Grade Group prediction method based on MIL with
a dual selective pattern aggregation strategy, termed DSPA-MIL. This approach
effectively aggregates instance features corresponding to different Gleason Pat-
terns and leverages their collaboration to predict the Grade Group. Additionally,
we introduce a training-inference framework that integrates the Teacher-Student
paradigm with Pseudo-Text Generation to reduce the reliance on real expert con-
cepts during inference. Experiments conducted on five datasets demonstrate the
superiority of our model in predicting patient-level Grade Group scores. The
limitation of this work is that in the end, we only utilized a single-resolution
input. Future studies may consider incorporating multi-scale morphological fea-
tures for more accurate diagnosis, similar to MS-RGCN. In addition, we did not
make use of the pixel-level Gleason Pattern annotations available for part of
the dataset. These annotations could serve as an additional supervisory signal
through semi-supervised learning frameworks.
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