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Abstract. Medical vision-language pre-training shows great potential
in learning representative features from massive paired radiographs and
reports. However, in computed tomography (CT) scans, the distribution
of lesions which contain intricate structures is characterized by spatial
sparsity. Besides, the complex and implicit relationships between differ-
ent pathological descriptions in each sentence of the report and their cor-
responding sub-regions in radiographs pose additional challenges. In this
paper, we propose a Similarity-Driven Cross-Granularity Pre-training
(SimCroP) framework on chest CTs, which combines similarity-driven
alignment and cross-granularity fusion to improve radiograph interpre-
tation. We first leverage multi-modal masked modeling to optimize the
encoder for understanding precise low-level semantics from radiographs.
Then, similarity-driven alignment is designed to pre-train the encoder
to adaptively select and align the correct patches corresponding to each
sentence in reports. The cross-granularity fusion module integrates multi-
modal information across instance level and word-patch level, which
helps the model better capture key pathology structures in sparse radio-
graphs, resulting in improved performance for multi-scale downstream
tasks. SimCroP is pre-trained on a large-scale paired CT-reports dataset
and validated on image classification and segmentation tasks across five
public datasets. Experimental results demonstrate that SimCroP outper-
forms both cutting-edge medical self-supervised learning methods and
medical vision-language pre-training methods. Codes and models are
available at |https://github.com/ToniChopp/SimCroP.
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1 Introduction

Deep learning (DL) has demonstrated exceptional potential in the realm of radio-
graph representation learning [352TI4T424/T536/2726/28], which is trained on
large-scale annotated datasets and achieves performance on par with that of clin-
ical expert. However, the annotation of radiographs remains a resource-intensive
and burdensome endeavor for clinical practitioners outside their regular duties,
posing a significant bottleneck in the advancement of DL applications in medical
imaging. Medical vision-language pre-training (Med-VLP) [12I30] seeks to capi-
talize on the detailed textual interpretations provided by radiograph-report pairs
to assist radiograph representation learning, which has emerged as a prominent
focus in contemporary researcher [29T7I3TI32I33T3].

However, radiographs usually have complex textures and structures, espe-
cially for 3D chest CT scans. This primary challenge lies in extracting precise rep-
resentations from deeper feature spaces [9]. Prior Med-VLP studies on 3D chest
CTs have predominantly relied on contrastive learning (CL) [22]. For instance,
CT-CLIP [8] introduces a CT-centric contrastive language-image pre-training
framework, which optimizes the mutual information between global representa-
tions. Similarly, M3D [I] develops a multi-modal large language model built on
CL principles. BIUD [3] bootstraps the understanding of 3D chest CT images
by distilling chest-related diagnostic knowledge from an extensively pre-trained
2D X-ray expert model. Moreover, fVLM [25] adopts a fine-grained approach,
aligning anatomical regions of CT images with their comparable descriptions
in radiology reports and performing CL on each anatomical region individually.
MG-3D [19] incorporates both intra-patient cross-modal semantic consistency
and inter-patient semantic correlations into cross-modal attention mechanisms.

Nevertheless, prevailing methods exhibit notable limitations in effectively uti-
lizing prior knowledge from reports for radiograph representation learning in two
critical aspects. First, the spatial distribution of lesions posing intricate struc-
tures is characterized by spatial sparsity [25], presenting considerable difficulties
in extracting visual features. Second, radiology reports exhibit hierarchical lin-
guistic structures, consisted of descriptive sentences describing correlative visual
features and interpretive statements synthesizing the clinical narratives [§], in-
troduces inherent complexity that hinders effective pre-training. Furthermore,
the absence of explicit spatial grounding annotations for descriptive sentences
introduces substantial optimization challenges in establishing precise correspon-
dences between sentences and massive visual feature space during pre-training.

To address these issues, we propose Similarity-driven Cross-granularity Pre-
training (SimCroP), which pre-trains strong representation by aligning descrip-
tive sentences in radiology reports and their corresponding sub-regions in radio-
graphs. SimCroP addresses three core medical self-supervised learning (Med-
SSL) objectives: (1) Masked image modeling, which enhances the model’s ability
to capture structural and textural details in sparse radiographs.(2) Sentence-
subregion alignment. Inspired by the fact that doctors usually write sentence
to describe the pathological context of some subregions in the radiograph, we
first choose the sentence level as the granularity for extracting the supervision in
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the report. Then, we design Similiarity-driven Alignment (SA) to pull the text
feature of each sentence closer to the vision features of its most similar visual
patches. Without any manual annotations, SA automatically optimizes the vi-
sion encoder to select and align the correct patches which are reflect to each sen-
tence in reports. (3) Cross-granularity masked report modeling, which integrates
instance-level visual features via global average pooling (GAP) with word-patch
level cross-modal features, to facilitate the reconstruction of the masked reports.

To comprehensively evaluate the effectiveness of SimCroP, we pre-train our
Med-VLP framework on the large-scale medical dataset CT-RATE [8], which
comprises paired chest CT images and reports. We conduct extensive experi-
ments on multi-granularity downstream tasks, including linear probing classifica-
tion and fine-tuning segmentation, across five public datasets. Empirical results
demonstrate the superiority and generalization ability of SimCroP, significantly
surpassing state-of-the-art (SOTA) Med-VLP methods with substantial perfor-
mance improvements.

2 Method

In this section, we delve into the design of SimCroP for medical vision lan-
guage pre-training on chest CTs. Fig. [I] illustrates our similarity-driven cross-
granularity pre-training (SimCroP) framework. The fire and ice icons represent
the parameters of the module that are trained and frozen, with shared weights
between the text encoders. First, we briefly introduce the multi-modal masked
modeling for 3D radiographs and paired reports utilized in our framework in
section [2.] Then, we illustrate how SimCroP leverages similarity-driven align-
ment for better fit the sparsity of radiographs like CTs in section Finally,
we clarify the detailed approaches of cross-granularity fusion in section [2.3

2.1 Masked Modeling

Our approach is grounded on the multi-modal masked autoencoder architec-
ture [5]. Following previous works [II325], we adopt vision transformer (ViT) [6]
and BERT [18] as the vision and text encoders, respectively.

Radiograph masking. Given a radiograph I € R#*WXD and its paired report

T, we first split the radiograph into % X Pﬂ X % patches with size Py X
Py x Pp. Following MAE [10], we mask 75% of the patches, resulting in N

unmasked patches I, = {I3}) ;. These unmasked patches are then augmented

with 3D position embeddings E,,s as described in [34] and passed through the
vision encoder to obtain the vision feature f, = E,(Iy, Fpos). During the vision
decoding stage, f, is fed into the vision decoder D, along with mask tokens f,,,
to reconstruct the radiograph I= Dy (fy, fm). We optimize the reconstructed
radiograph using the mean squared error (MSE) loss:

Ly (I, T) = MSE(Dy(Ey (I, Epos), fm), I). (1)
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Fig. 1: (a) Overall framework of proposed SimCroP for medical vision-language
pre-training. We combine multi-modal masked modeling, similarity-driven align-
ment, and cross-granularity fusion to achieve effective radiograph representation
learning. (b) Details of similarity-driven alignment. For each descriptive sen-
tence, we calculate the similarity with each patch in the radiograph and select
the top-K most similar patches to ensure better alignment.

Report masking. For the original report consisting of N; words, we first tok-
enize the words to tokens. Then, we randomly mask a proportion () of tokens
from the report T, resulting in a masked set of tokens Ty, = {T! }]' and the
unmasked tokens T, = {T!}*; V. Both masked and unmasked tokens are
passed together through the text encoder to obtain the masked report feature
ft = Ex(T),, T,). The decoding procedure will be introduced in secion

2.2 Simlilarity-driven Alignment

Given an input report T = [Tr,Ti|, Tr and 77 indicates the finding and impres-
ston section, respectively. We strategically disaggregate the "Finding" section
T% due to its clinical relevance in encapsulating comprehensive visual observa-
tions. For a "Finding" component comprising Nge,; linguistically independent
clauses, we directly feed the tokenized sentence ensemble Tyeny = {17, iisf”t
into the text encoder to derive sentence-level embeddings f!.,, = Ei(T!.,,). As
illustrated in Fig. [[[b), similarity-driven alignment between the [-th sentence

T!,,: and s-th unmasked patch I$ can be calculated as:

Siml,S(Tslentv w) = [Et(Tslent)]T[Ev(IivEpOS)]~ (2)

The top-K most relevant spatial correspondences per sentence are then identified
through:
Siml,K (Tl

sent’

I$) = TopK Simy o(T!,,., I2). (3)
0<s<N
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Table 1: Evaluating our method against other SOTA Med-SSL and Med-VLP
approaches on the linear probing classification task with 3D ViT-B backbone.
The best and second-best results are in bold and underlined, respectively.

CT-RATE CC-CCII Rad-ChestCT | LUNAI6
Method (AUC) (ACC) (AUC) (AUC)
1% 10% 100% | 1% 10% 100% | 10% 100% | 10% 100%

Random init | 58.2 60.9 63.8 |57.8 747 772|564 60.0 |57.6 60.4

3D Med-SSL

MAE [10] | 75.6 78.1 79.9 |67.4 81.6 885|686 718 |66.3 705
3D Med-VLP

M3AE [5] 772 795 810|698 817 899693 722 |67.1 708
CT-CLIP [§] 741 78.6 80.4 |65.0 76.7 83.6 | 675 69.1 |64.0 65.0
MRM [33] 777 81.7 821|702 813 903 | 721 726 |66.6 722
M3D [1] 743 79.1 80.7 | 654 77.0 83.8 | 68.0 69.8 |652 684
fFVLM [25] 794 81.8 822 | 723 829 90.7 [71.1 742 |659 713

SimCroP (Ours) | 81.0 82.4 82.9 | 73.1 83.2 91.3 |73.4 75.8 |67.0 73.3

These discriminative visual features fX undergo spatial aggregation via GAP to
produce similarity-driven aligned feature for the [-th sentence féli o = GAP(fK).
To enforce semantic coherence between subregion visual features and sentence
features, we employ similarity-driven fine-grained contrastive learning with the
following symmetric InfoNCE loss [20]:

. 1 Nsent [1 exp(sf’ti/T) . exp(s% /7') (4)

align = — 0g Noon 0og Noon - ’
Nsent ‘= PO exp(s}/7) > e exp(s}y/7)

where s7% = (fl,,)7" gem,sgf’j = (fi.)" (zlign’ 7 denotes the temperature,

which is set to 0.07 following common practice.

2.3 Cross-granularity Fusion

Diverging from M3AE [5], which singularly employs cross attention mechanisms
to aggregat vision feature f, to the report feature f;, we propose a hierarchical
fusion architecture comprising two complementary components:

— Instance-level vision features f! are derived through global average pooling:
1= GAP(f,);

— Word-patch level cross-modal features f" are computed via scaled dot-
product cross attention:

fthI(vak)T
vy,

where W,, Wy, and W,, are linear projection matrix, dy, is the feature dimension.

Finally, the fused features are passed through the text decoder to reconstruct

' = CrossAttention(f;, f,) = Softmax( ) foWo, (5)
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Table 2: Segmentation results of Med-SSL.  Table 3: Ablation study on each de-
and Med-VLP approaches on the fine- sign component in our framework on
tuning segmentation task with 3D ViT- linear-probe classification and fine-
B backbone. The best and second-best tuning segmentation. "SA" refers to
results are in bold and underlined, re- Similarity-driven Alignment, "IL"

spectively. denotes Instance-level vision fea-
LUNA16 |BTCV tures, and "WL" stands for Word-

Method (Dice) (Dice) patch level cross-modal features. v’
10% 100% | 100% and X denote whether the compo-

Random init | 91.9 92.3 | 78.9 nent is included.

— RadChestCT|LUNA16
3D Med-SSL :
SA IL WL (AUC) (Dice)
MAE [10] | 92.7 933 | 80.3 10% 10%
3D Med-VLP
M3AE [5] 93.1 93.7| 80.5 i : j Z‘;S g?'g
CT-CLIP [8] 92.9 934 | 79.4 S ) 924
MRM [33] 932 935 | 80.3 : ;
M3D [1] 92.9 932 | 79.6 VX 73.3 92.8
fVLM [25] 93.1 93.4 | 80.0 v x v 72.7 92.6
SimCroP (Ours) [93.5 93.7 | 80.7 v v/ 73.4 93.5

the masked tokens T}, = Dy (f1+ f). The masked text modeling loss for report
reconstructing can be formulated as

N
| M A R

Lyim = —5— > log P(Ty, = T}, | Tn). (6)
™ =1

The overall loss function of SimCroP is as follows:
L = Ly + A Latign + A2 Lmim. (7)

Empirically, we configure Ay = Ay = 1 to maintain equilibrium between align-
ment and reconstruction objectives.

3 Experiments and Results

Pre-training datasets. We employ CT-RATE [g], a public large-scale dataset
comprising 50,188 CT volumes with paired reports. Per official split, we leverage
47,149 volume-report pairs from the official training subset during pre-training.
Fine-tuning datasets. CT-RATE [8] and RadChestCT [7] establish multi-
label classification benchmarks with official data partition. The CC-CCII [11]
dataset addresses multi-class pneumonia classification task with a 7:3 random
partition. LUNA16 [23] provides dual objectives of nodule classification and pul-
monary segmentation, with analogous 7:3 randomized data stratification. To
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Fig. 2: Test results for each label on external  Fig.3: Ablation on Top-K and
dataset RadChestCT. report masking ratio selection.

assess cross-domain transferability of learned chest CT representations to ab-
dominal imaging, we employ the BTCV [16] dataset under its prescribed organ
segmentation protocol with official data splits. Unless official validation set is
defined, testing sets serve as validation sets for all experimental configurations.
Implementation. We resample the volume to 1.5 x 1.5 x 3.0 spacing using tri-
linear interpolation and map the Hounsfield unit range from (—1000,1000) to
(—1,1), with clipping. The image size is set to be 224 x 224 x 112. We leverage an
8-layer 3D ViT-B [6] as vision encoder initialized with MAE ImageNet-1K pre-
trained weights [10] and a 4-layer 3D ViT-B for vision decoder, with patch size
of 16 x 16 x 8. Additionally, we employ pre-trained CXR-BERT [2] as our text
encoder and a 6-layer BERT as our text decoder. The model is trained for 140
epochs on A800 GPUs with a batch size of 48, using AdamW as the optimizer
with a learning rate of 1.5e-4 and weight decay of 0.05.

Baselines. We compare SimCroP with one Med-SSL method, MAE [10], and five
Med-VLP methods: M3AE [5], CT-CLIP [8], MRM [33], M3D [I], and fVLM [25].
For fair comparison, we directly use the official pre-trained weights of M3D and
re-implement the other methods under the same data settings as our approach.
Classification results. We perform linear-probe classification with our Sim-
CroP on four datasets, as shown in Table [I] our SimCroP significantly outper-
forms 3D Med-SSL and 3D Med-VLP approaches across different training data
ratios on all four datasets. Notably, on CT-RATE, which includes the largest
number of disease labels and test data, SimCroP surpasses the current state-of-
the-art (SOTA) method by 1.6% AUC while using 1% labeled data. Interestingly,
we find the masked modeling-based methods M3AE [5], MRM [33] and SimCroP
outperform contrastive-based methods like M3D [I] and fVLM [25] especially
on fine-grained nodule classification task introduced by LUNA16. Additionally,
Fig[2|shows the test results for each label on the external dataset Rad-ChestCT,
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Fig. 4: Visualization of top-K patches correlated to descriptive sentences.

while training on 100% of the training data from CT-RATE. The label trans-
fer setting follows CT-CLIP[g], and the transfer results further demonstrate the
robustness and superiority of the representation learned by SimCroP.
Segmentation results. To evaluate the effectiveness of fine-grained radio-
graph representations learned by SimCroP, fine-tuning segmentation tasks are
conducted in Table [2| using UNETR [9] framework. SimCroP consistently out-
performs all aforementioned methods across lung segmentation and abdomi-
nal organ segmentation. This demonstrates that SimCroP effectively leverages
its strong ability to utilize cross-granularity information between radiographs
and reports. Therefore, SimCroP generalizes well across different medical vision
tasks, establishing itself as a robust and highly effective Med-VLP method.
Ablation study. As demonstrated in Table [3] our similarity-driven alignment
module achieves substantial performance gains in radiograph representation learn-
ing, with improvement differentials exceeding 1% and 1.1% on multi-label clas-
sification and pulmonary segmentation task respectively. A critical observation
reveals that the ablation configuration devoid instance-level visual features un-
derperforms the variant excluding word-patch cross-modal features for lung seg-
mentation. This phenomenon can be attributed to the domain-specific character-
istic of chest CTs where macro-anatomical structures occupy significantly larger
voxel distributions compared to localized pathologies, thereby rendering holis-
tic instance-level features more discriminative for lung segmentation. In Fig. [3]
ablation studies investigating the selection of top-K and report masking ratios
demonstrate that subregions comprising of 64 patches (appropriately 10% of the
radiograph area) optimally align with the semantic granularity of descriptive
sentences. This empirical evidence validates SimCroP’s capability to address the
inherent spatial sparsity of radiographs. Furthermore, a report masking ratio of
75% determines to maximize radiograph representation learning efficacy.
Representation visualization. Fig. [d]exhibits the subregions consisted of top-
K similar patches correlated to the given descriptive sentences. Lesions and
anatomy locations with higher similarity to the sentences are highlighted in
red, showcasing SimCroP’s superiority of similarity-driven alignment design.

4 Conclusion

We propose a novel medical vision-language pre-training method specifically de-
signed for radiographs with inherent sparsity. To address the challenge of spatial
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sparsity and complex fine-grained connections between sentences and subregions,
we pre-train the model to select and align each descriptive sentences with cor-
responding subregions. Furthermore, to tackle the issue of the massive visual
feature space in 3D radiographs, we introduce a cross-granularity fusion mod-
ule that simultaneously aggregates instance-level and word-patch level features.
The effectiveness of our proposed modules is validated through multi-scale down-
stream tasks, including linear-probe classification and fine-tuning segmentation
across multiple datasets, demonstrating the robustness of our method. However,
the absence of instance-level cross-modal alignment hinders the zero-shot per-
formance of our approach. In future work, we aim to address this limitation,
further enhancing SimCroP as a more powerful foundation model.
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