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Abstract. Accurate diagnosis of vertebral diseases is vital for prevent-
ing severe complications, but data imbalance between abundant normal
and rare pathological cases poses a substantial challenge to diagnos-
tic performance. Medical image generation offers a promising solution
by synthesizing pathological samples. However, existing diffusion-based
methods, pre-trained on natural images, often fall short in capturing
complex pathological features due to the pre-training knowledge gap,
as well as struggling to obtain precise lesion masks and ensure seam-
less integration between lesions and the background. To overcome these
challenges, we propose a novel diffusion-based medical image genera-
tion framework called MedSoft-Diffusion, which involves leveraging de-
tailed medical knowledge to ensure that generated images are not only
semantically consistent with the specified pathological conditions but
also anatomically accurate. Our framework includes a Medical Semantic
Controller (MSC) designed to enhance the alignment between textual
prompts and lesion characteristics, ensuring the synthesis of semanti-
cally accurate pathological images. Furthermore, the Soft Mask Inpaint-
ing Strategy (SMIS) is proposed to combine soft masks with blurring
techniques to improve the realism of synthesized images. Experimental
results on two vertebral disease datasets demonstrate notable improve-
ments in both image quality and classification performance using our
approach. Code is available at MedSoft-Diffusion.
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1 Introduction

Accurate diagnosis of vertebral diseases is essential in clinical practice due to its
potential to avert serious complications, including neural impairment, fractures,
and chronic pain [1|. Early detection and treatment can significantly enhance
patient outcomes and quality of life while improving the overall prognosis [2].
Nonetheless, a major challenge in diagnosing vertebral conditions lies in the class
imbalance issue prevalent in clinical datasets. Specifically, normal samples are
disproportionately represented compared to pathological cases, a discrepancy
that adversely affects the precision and recall rates of predictive models [3,4].

Addressing the scarcity of rare conditions in medical datasets has become a
focal point in contemporary research. One promising approach is to augment ex-
isting datasets with synthetic medical images, broadening data distribution and
enhancing the efficacy of model training [5]. For this purpose, text-to-image diffu-
sion models have garnered significant attention for their adaptability and precise
control over image synthesis processes [6,7,8,9,10]. These models, however, are
predominantly pre-trained on vast collections of natural images, which limits
their effectiveness in capturing the intricate morphological nuances specific to
pathological regions within medical imagery. Unlike natural images, medical im-
ages possess unique visual and semantic characteristics, and the diffusion model
requires detailed and accurate representations of complex pathologies.

Synthesizing high-quality medical images with pathological features is highly
challenging, primarily due to the necessity of producing anatomically accurate
backgrounds in conjunction with realistic pathological elements. In vertebral dis-
ease diagnosis, where normal samples vastly outnumber pathological ones, this
disparity inspires an alternative approach: instead of generating entire medical
images, we can leverage inpainting techniques [11] to insert lesions into existing
normal samples. Such a strategy could simplify the synthesis process and avoid
the high computational costs associated with fully generative approaches. Never-
theless, traditional inpainting approaches suffer from the following two problems:
(1) Difficulty of annotating precise lesion masks (hard masks). The main rea-
son lies in the inconsistent annotation standards across different institutions and
the extremely high cost of manually delineating lesion areas. (2) Low synthesis
quality at mask boundaries. The boundaries of masks tend to be overly abrupt,
resulting in the generated lesion regions not blending naturally with surrounding
tissues.

To address the aforementioned issues, we introduce MedSoft-Diffusion, a
novel medical image generation framework guided by medical semantic features
and soft mask conditioning, which enhances the model’s semantic understand-
ing of medical images, mitigates the lesion mask scarcity, and ensures seamless
integration between lesions and their backgrounds. Concretely, we propose a
Medical Semantic Controller (MSC) to capture detailed pathological features,
which leverages a pre-trained medical multimodal model (BiomedCLIP [12] in
our experiment) to enhance the alignment between textual prompts and visual
structures during the diffusion process. By interpreting masked lesion character-
istics from textual prompts, the MSC enhances the diffusion model’s capability
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to capture nuanced pathological details. Besides, given the limited availability of
high-quality lesion masks, we introduce a Soft Mask Inpainting Strategy (SMIS)
to substitute hard masks with soft masks (e.g., anatomical segmentation maps
or bounding boxes), which provide a flexible and adaptive method to guide the
diffusion process and mitigate the issue of insufficient lesion annotations. The
overview framework is illustrated in Fig. 1.

Our contributions are as follows:

(1) MedSoft-Diffusion. We propose a diffusion-based medical image genera-
tion framework guided by medical semantic features and soft mask conditioning
to enhance clinically meaningful pathology synthesis and anatomical consistency
while mitigating lesion annotation scarcity.

(2) Medical Semantic Controller. We introduce a medical multimodal-driven
controller that aligns textual pathology descriptions with masked images, en-
abling the diffusion model to capture fine-grained pathological semantics for
precise and clinically relevant lesion generation.

(3) Soft Mask Inpainting Strategy. We use soft masks and introduce blurring
to smooth lesion boundaries, facilitating flexible lesion inpainting and improving
anatomical integration and synthesis realism.

2 Method

2.1 Medical Semantic Controller

The Medical Semantic Controller (MSC) is a transformer-based encoder designed
to predict the pathological features of a masked lesion region based on its textual
description. It takes as input the textual feature e; extracted from the lesion
description T and the visual feature e, from the masked image I,,, then outputs
a medical semantic feature ep;sco. This feature is compared with e,., the feature
of the original image x¢ (which contains the lesion), ensuring that the generated
lesion aligns with both the textual description and real pathology. In Fig. 1,
the Medical Text Encoder and Medical Visual Encoder are frozen, pre-trained
medical multimodal models.

To obtain I,,, we first process the soft mask M by applying a blurring opera-
tion. Unlike traditional hard lesion masks, which are rarely available in real-world
datasets, we use soft masks that cover the lesion region but are derived from ver-
tebral segmentation masks or bounding box masks of vertebrae. These are more
accessible since high-accuracy vertebra segmentation and detection models are
already available. The blurring operation is defined as follows:

Mb(‘xay) - (GU * M)(.T,y), (1)

where G, is a Gaussian blur kernel. The processed mask M, is then used to
mask the original image:
Iy =20 0© (1 - Mb)a (2)

where ® denotes element-wise multiplication. This ensures that only the soft-
masked region is removed while preserving the background. The MSC takes
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Fig. 1: Overview of our MedSoft-Diffusion method. (1) Pretraining the Medical
Semantic Controller (MSC) to predict the medical semantic features of target
lesions before the denoising process. (2) Training with the Soft Mask Inpainting
Strategy (SMIS), where medical semantic features guide the diffusion model to
inpaint lesion regions while the soft mask restricts the learning process to the
masked area, ensuring the model focuses on generating realistic lesion textures.
(3) During inference, the soft mask confines generation to the lesion region,
preserving background integrity and enhancing overall realism.

as input the concatenated textual and visual features and produces a fused
representation:

emsc = MSC(e; ® ey), (3)
where ® denotes feature concatenation. The ep;sc is then aligned with the

full-image feature e, to ensure that the generated lesion is consistent with real
pathological structures. This alignment is enforced by the following loss function:

Laso = Eo 1, mymp(xom,7) [lemse —erl3] - (4)
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By minimizing this loss, MSC learns to project textual pathology descriptions
and masked images into a feature space that closely matches real lesion repre-
sentations, ensuring that the generated pathology characteristics remain both
clinically meaningful and visually realistic.

2.2 Training with Soft Mask Inpainting Strategy

The training process is conducted in the latent space [6], where zy represents
the latent representation of xy. The mask my, is the downsampled version of M,
to match the dimensions of the latent space. The forward process of diffusion
is defined as: z; = /20 + /1 — aye , where z; is the noisy image at timestep
t, € ~ N(0,I) represents Gaussian noise, and a; is the cumulative noise decay
factor. To strengthen the interaction between the medical semantic feature ey;sc
and the text embedding C, we introduce an enhanced cross-attention mechanism
in the U-Net structure of the diffusion model, which is formulated as:

Znewzs(Qj(;)V—l—’y-S(Q%T)V’, (5)

where v is a weight balancing the two attention terms, and S represents the
Softmax function. Here, @, K, and V are the query, key, and value matrices
for the attention operation applied to text cross-attention, while K’ and V'’
correspond to medical semantic attention. Given the query features Z and the
medical semantic feature eyssc, the query matrix is defined as Q = ZW,, with
K' = emscW], and V' = epgcW,,. Notably, only W/ and W) are trainable,
focusing adaptation on the integration of medical semantics without altering the
original text embeddings. This approach enhances the model’s ability to synthe-
size medically meaningful lesion representations. We incorporate the downsam-
pled soft mask m;, to control the inpainting process within the lesion region. The
loss function is defined as:

Lpnm(0,2) =K., gz )20),cn0.r) [l€a(ze:t, Crenrse) — €3 ©@my],  (6)

where m;, ensures that the model primarily reconstructs the lesion region. Un-
like conventional diffusion models that modify the entire image, our approach
localizes generation to the lesion, reducing the learning complexity and enhanc-
ing the realism of the generated pathology. Additionally, by leveraging both the
medical semantic feature ep;gc and the text embedding C, the model generates
clinically meaningful pathology features aligned with real medical cases.

2.3 Inference Process

During inference, the trained diffusion model iteratively denoises the input image
to synthesize lesions according to the medical text description. The generated
image Z; 1 is obtained by blending the predicted image p;_; and the noised
image 2, +—1 using the soft mask my:

21 =Pr—1 O Mp + Zmi—1 © (1 —my), (7)
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where z,, +—1 follows the noising process: 2y, +—1 = \/0¢t—12m + /1 — 0z_1€, and
zm is the latent representation of I,,,. The predicted image p;_; is estimated
using;:

R 1 11—«
D1 = NG (Zt — ﬁﬁe(z‘ut,a €Msc)> + 012, (8)

where a small noise ;2 is added to enhance diversity in generation. This strategy
modifies only the lesion region within the soft mask while preserving anatomical
integrity. The blurred soft mask my, smooths lesion boundaries, ensuring seamless
blending and enhancing realism.

3 Experiments

3.1 Experimental Setup

Datasets Two vertebral datasets are used. (1) VerTumor1200 [13] contains 1232
MRI images of vertebral tumors, including benign (hemangiomas) and malignant
(metastases, myeloma) cases. Radiologists manually annotate lesion descriptions
for clinical accuracy. Soft masks are derived from vertebral segmentation masks
in the dataset, offering an accessible alternative to precise lesion masks while pre-
serving anatomical context. (2) RSNA 2024 Lumbar Spine Degenerative Clas-
sification [14] includes MRI scans annotated for degenerative conditions. We
focus on three sagittal-related diseases: Left Neural Foraminal Narrowing, Right
Neural Foraminal Narrowing, and Spinal Canal Stenosis. The dataset provides
severity labels (Normal/Mild, Moderate, Severe) across L1/L2 to L5/S1. Lesion
descriptions are generated using GPT-4o [15] with prompt engineering for dis-
ease types and severity levels, then reviewed by radiologists. Soft masks, created
using bounding boxes centered on lesion coordinates, allow flexible localization
without requiring pixel-wise segmentation.

Implementations Our method is implemented using the HuggingFace Dif-
fusers library [16] and built on Stable Diffusion 1.5 (SD1.5). The medical text
and visual encoder are based on BiomedCLIP [12] for robust medical semantic
feature extraction. A new cross-attention layer is added to each of SD1.5’s 16
cross-attention layers, with guidance strength v = 1. We use the AdamW opti-
mizer [17] with a learning rate of 0.0001 and weight decay of 0.01. For classifier-
free guidance, text or medical semantic features are independently dropped with
a probability of 0.05, and both together with 0.05 probability. Training is con-
ducted on four NVIDIA 3090 GPUs over three days for 60K iterations. During
inference, a 50-step DDIM sampler with a guidance scale of 7.5 ensures a balance
between fidelity and generalization in anomaly generation.

3.2 Experimental Results

Quantitative Results To assess the quality of generated medical images, we
use Fréchet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), and
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Table 1: Comparison Results. The optimal outcomes are highlighted in bold
font, whereas the next best results are underscored. “w/0” denotes “without”.

(a) Quality of image generation

Metric ‘SD [6] T2I-Adapter [7] ControlNet [3] IP-Adapter [9] BrushNet [10] Ours

FID | |3.105 3.087 3.098 3.092 3.062 2.875
PSNR 1(10.214 10.135 10.289 10.367 10.312 10.845
SSIM 1 | 0.634 0.628 0.637 0.641 0.633 0.669

(b) Classification Performance

Method VerTumor1200 RSNA
AUC 1 Acc T Pret Rec 1T F11 ‘AUC 1T Acc T PretT Rec 1 F171
Baseline[ ‘0.838 0.876 0.640 0.777 0.702‘ 0.823 0.843 0.426 0.797 0.555
SD[6]| 0.843 0.881 0.653 0.782 0.712| 0.824 0.839 0.419 0.805 0.552

|

[6]
T2I-Adapter[7]| 0.847 0.884 0.661 0.787 0.718| 0.830 0.849 0.438 0.805 0.567
ControlNet[8]| 0.849 0.885 0.662 0.793 0.722| 0.831 0.850 0.440 0.805 0.569
IP-Adapter[9]| 0.861 0.891 0.674 0.814 0.737| 0.845 0.857 0.455 0.829 0.588
BrushNet[10]| 0.864 0.899 0.700 0.809 0.751| 0.841 0.856 0.453 0.821 0.584

Ours w/o MSC| 0.861 0.901 0.711 0.798 0.752| 0.835 0.851 0.442 0.813 0.573
Ours w/o SMIS| 0.879 0.909 0.726 0.830 0.774| 0.871 0.891 0.536 0.846 0.656
Ours| 0.898 0.930 0.795 0.846 0.820( 0.890 0.905 0.575 0.870 0.693

Structural Similarity Index Measure (SSIM). We compare our method with Sta-
ble Diffusion (SD) [6], T2I-Adapter [7], ControlNet [3], IP-Adapter [9], and
BrushNet [10]. As shown in Table 1 (a), our method achieves the best per-
formance across all three metrics, indicating superior image quality, structural
accuracy, and clinical realism compared to existing approaches.

To evaluate the effectiveness of our method in vertebral disease diagnosis,
we use the area under the curve (AUC), accuracy (Acc), precision (Pre), recall
(Rec), and Fl-score as evaluation metrics. We employ a baseline classification
model [18] and augment the training dataset with synthetic images generated by
different methods. We generate synthetic diseased images using only the training
data and train the classifier on a mixture of real and synthetic images, while the
evaluation is performed solely on real test images. To mitigate class imbalance,
we increase each diseased sample category to match the number of normal sam-
ples. The impact of synthetic data on classification performance is assessed by
measuring the improvement relative to the baseline. As shown in Table 1 (b), our
method achieves the best performance across all metrics. Notably, our approach
improves the Fl-score compared to the baseline, with an increase of 11.8% on the
VerTumor1200 dataset (from 0.702 to 0.820) and 13.8% on the RSNA dataset
(from 0.555 to 0.693). These results demonstrate that our method enhances
classification performance not only by mitigating data imbalance but also by



8 S. He et al.

BrushNet Ours

Real lesion

Normal Image Mask Stable Diffusion T2I-Adapter ControlNet  IP-Adapter

Text: Hyperintense vertebral lesion

Mask _ Real lesion
.
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improving the realism and clinical relevance of synthetic diseased images. The
ablation study results in Table 1 (b) indicate that MSC plays a more crucial role
in directing the model’s understanding of pathology, as removing MSC (Ours
w/0 MSC) results in an Fl-score drop of 6.8% (from 0.820 to 0.752) on VerTu-
mor1200, whereas removing SMIS (Ours w/o SMIS) leads to a smaller decrease
of 4.6% (from 0.820 to 0.774), respectively.

Qualitative Results Fig. 2 compares lesion synthesis results under different
soft mask constraints, demonstrating that our method better preserves anatom-
ical consistency while generating clear and realistic pathological features. Theo-
retically, the soft masks can take any shape as long as they cover the intended
lesion region. In our experiments, we use vertebral segmentation masks and
bounding box masks. The former ensures that lesions are confined within the
vertebrae, maintaining anatomical consistency, while the latter allows for shape
alterations, enabling the synthesis of lesions that may cause vertebral deforma-
tion (as shown in the bottom right example of Fig. 2 (b)).

4 Conclusion

In this work, we propose a novel diffusion-based framework called MedSoft-
Diffusion, leveraging detailed medical knowledge to generate high-quality images
with specified pathological conditions that are also anatomically accurate. MSC
is designed to enhance the alignment between textual prompts and lesion char-
acteristics, ensuring the synthesis of semantically accurate pathological images.
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SMIS is proposed to combine soft masks with blurring techniques to improve
the realism of synthesized images. Experimental results on two vertebral disease
datasets demonstrate notable improvements in both image quality and classi-
fication performance using our approach. Moreover, our method can be easily
extended to the synthesis of pathological images for other organs.
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