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Abstract. Cross-view interference caused by impure shared informa-
tion for multiview mammogram representation. Existing methods are
accustomed to assuming that purely complementary shared information
are provided between multiple views, ignoring the negative side of the
shared information. To address this issue, we propose the first Dual-view
Mammography Causal Graph (DMCG) to model multi-view represen-
tation by capturing direct and mediation effects. Based on DMCG, we
propose MammoCRKAN, the first counterfactual reasoning paradigm
integrating the Kolmogorov-Arnold theorem for decoupling interfering
information. MammoCRKAN comprises two key modules: the Spheri-
cal Sample Module (SSM), which enhances the direct effect of tumor
features by aligning consistent geometric representations, and the Kol-
mogorov–Arnold Aggregate Module (KAAM), which decomposes com-
plex joint causality into univariate effects to mitigate negative side of
mediation effects. Moreover, We find that heterogeneous channel al-
locations across views outperform fixed matching channels. Extensive
experiments on four publicly available mammogram datasets demon-
strate the effectiveness of MammoCRKAN. Code is available at https:
//guoli-w.github.io/MammoCRKAN.

Keywords: Multi-View Representation Learning · Counterfactual Rea-
soning · Kolmogorov-Arnold Theorem · Mammographic Image Analysis.

1 Introduction

Existing multi-view mammographic representation learning methods suffer from
cross-view interference. These methods [23,2,18,15,6,7,5,19] accustomed to as-
sume that the cephalocaudal (CC) and mediolateral oblique (MLO) views con-
tribute purely complementary shared information, thereby overlooking poten-
tial redundancy and confusion between shared features. As shown in Fig. 1(a),
axillary features in the MLO view may introduce redundant interference into
the CC view, while the uniform tumor density in the CC view can reduce the
model’s sensitivity to abnormalities in the MLO view, resulting in similarity
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interference. Consequently, eliminating cross-view interference while preserving
beneficial shared information remains a critical challenge.

Impure shared information disrupts multi-view representations. Existing meth-
ods focus on fusion strategies at various stages (early [23,6], mid [15,18,19],
late [15,7]) to maximize shared information, yet they overlook feature confusion.
Moreover, some approaches [23,15,7] increase the number of learnable views to
capture more shared information, neglecting feature mismatch. Despite these
efforts, directly decoupling interfering information from shared information re-
mains challenging (Fig. 1(b)).
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Fig. 1: (a) Impure shared info between MLO and CC views can cause cross-view
interference. (b) Impure shared info leads to unreliable representations in existing
multi-view methods. (c) DMCG models multi-view representations under causal
perspective, demonstrating that enhancing positive direct effects and mitigating
negative mediation effects improves representation performance.

Counterfactual reasoning can decouple interfering information from impure
shared information by analyzing causal relationships [4,24,22]. Both counter-
factual reasoning [26,1] and intervention [11,13] probe variable correlations via
causal inference, with intervention controlling confounders and counterfactual
reasoning optimizing the Total Direct Effect (TDE) to reveal contradictory ef-
fects [20]. However, modeling high-dimensional, nonlinear causal relationships in
multi-view mammogram representations is challenging. The Kolmogorov–Arnold
(K-A) theorem [21] mitigates this by decomposing complex mappings into re-
solvable univariate functions, thereby reducing modeling difficulty and enhancing
the feasibility of counterfactual reasoning.

We first propose a Dual-view Mammogram Causal Graph (DMCG) to model
the TDE in multi-view representation learning. As shown in Fig. 1(c), TDE
comprises both Direct Effect (DE) and Mediation Effect (ME). The tumor in
dual-view X serves as the independent variable, influencing dependent variable
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Y via the direct causal path X → Y . Meanwhile, impure shared information acts
as mediator M, contributing to the ME. Since M consists of background B and
X, interference is naturally present. To mitigate the negative side of the ME,
we first propose MammoCRKAN, a novel counterfactual reasoning paradigm
for multi-view mammogram representation that incorporates the K-A theorem.
MammoCRKAN consists of two key modules: Spherical Sample Module (SSM)
and Kolmogorov-Arnold Aggregate Module (KAAM). SSM enhances the DE of
the tumor itself, while KAAM reduces the negative side of the ME caused by
impure shared information. Our main contributions are:

1. DMCG is the first causal graph to model cross-view interference in multi-
view mammogram representation.

2. MammoCRKAN is the first paradigm to mitigate the negative side of view
shared information via counterfactual reasoning with K-A theorem in multi-
view mammogram representation learning.

3. MammoCRKAN is also the first to apply the K-A theorem to decompose
complex joint causality into univariate functions, simplifying causal modeling
and enhancing counterfactual reasoning in medical image analysis.

2 Method
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Fig. 2: MammoCRKAN consists of SSM and KAAM. SSM strengthening direct
effect. KAAM promoting positive side of mediation effect.

2.1 Multi-view mammogram representation problem formulation

Let IMLO
i , ICC

i ∈ Ii be the i-th breast (left or right) with MLO and CC views.
Yi ∈ Y = {0, 1, 3} denotes the label (0 : Normal, 1 : Benigns, 2 : Malignant), and
Y MLO
i = Y CC

i . Our goal is to train a Deep Neural Network (DNN) f(·) based
on the D that can output accurate predictions for unseen examples.

To mitigate the negative side of mediator M (impure shared information),
a commonly used strategy is TDE, which aims to strengthen the DE along
independent variable X → dependent variable Y . In the context of multi-view
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learning, for IMLO and ICC belonging to the ipsilateral breast, DMCG defines
TDE(IMLO, ICC) as the probability P that the target tumor x ∈ {IMLO

i , ICC
i }

belongs to malignant, as shown in Eq. (1):

TDE(I) = P (YM = 1 | X = x,B = b)︸ ︷︷ ︸
Term 1: P1 ∼ (x, b)

−P (YM = 1 | X = x0, B = b)︸ ︷︷ ︸
Term 2: P2 ∼ (b)

, (1)

where X = x0 represents the operation of masking the features of the target tu-
mor x. The subscript M denotes the influence of the impure shared information
M from two views on the prediction. The goal of TDE is to preserve the posi-
tive side of mediation effect through the mediator pathway [X → M → Y ] while
mitigating the negative side introduced by the mediator pathway. Specifically,
Term 1 in Eq. (1) represents the prediction based on M formed by both x and b,
while Term 2 represents the prediction from M constructed solely from b when
x is masked. Term 2 quantifies the interference from b, as the model predicts
a "tumor" even without x, capturing the scenario where high breast density
leads to similarity interference due to low distinguishability between tumor and
background. The subtraction operator removes this negative mediation effect.

During the inference process, the first probability P1 in TDE can be directly
obtained by training a DNN with IMLO and ICC. Unfortunately, it is challeng-
ing to obtain the second probability P2 by masking the features of x, as the
location of the target tumor is unknown. Considering that subtraction operators
often introduce negative values, we transform the P2 into its complementary
form, which represents the probability for the target tumor x when masking its
background b, as shown as Eq. (2):

TDE(I) = P (YM = 1 | X = x,B = b)︸ ︷︷ ︸
Term 1: P1 ∼ (x, b)

+ψP (YM = 1 | X = x,B = b0)︸ ︷︷ ︸
Term 2: P2 ∼ (x)

, (2)

where B = b0 represents the operation of masking the features from background
b in the impure shared information M, and ψ is a parameter related to the data.

This transformation shifts the negative mediation effect caused by M (solely
b) into an enhancement of the direct effect from x, preventing cross-view inter-
ference from impure shared information. As Eq. (2) shows, strengthening Term
1 (DE) and promoting Term 2 (positive ME) enhances the TDE. Accordingly,
MammoCRKAN employs SSM for Term 1 (X → Y ) and KAAM for Term 2
(X → M → Y ).

2.2 SSM for strengthening direct effect from X in [X → Y ]

To obtain a more stable direct effect (Term 1 of Eq. (2)), SSM is proposed to learn
consistent geometric features of the target tumor across views. Specifically, by
feeding both the original IMLO and ICC into the first backbone f1b (·) simultane-
ously, coarse-grained feature maps FMLO ∈ RH×W×C , and FCC ∈ RH×W×C can
be obtained. Subsequently, SSM resamples these inputs to introduce spherical ge-
ometric properties and learn consistent features in a spherical coordinate system.
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First, each pixel in each view is transformed into the azimuth angle α and the po-
lar angle β on the sphere according to: α = x−(W−1)/2

W ·2π, β = −y−(H−1)/2
H ·π,

where α ∈ [−π, π], β ∈ [−π/2, π/2], x and y are the pixel indices of the FMLO/CC,
and the (α, β) ∈ RH×W×2 is the spherical coordinate grid.

Directly using the grid (α, β) may yield insufficient geometric information.
SSM designs G(α, β) = (sinα, cosα, sinβ, cosβ, cosα cosβ). to learn 5D spher-
ical geometric properties. These spherical geometric properties are embedded
into FMLO/CC, enhancing the consistency of cross-view target tumor geometric
features. To ensure that sampling points more accurately align geometric prop-
erties across different views, SSM generates an offset field (∆α,∆β) through two
convolutional layers: (∆α,∆β) = fConvs(FMLO/CC · G(α, β)). Then, SSM using
Gridsample, to interpolate the FMLO/CC and resample based on the offset field,
aligning tumor consistency geometric features across views, as shown as Eq. (3):

F o
MLO/CC = FMLO/CC(α0 +∆α, β0 +∆β), (3)

where (α0, β0) are the standard grid points in the initial spherical coordinate
system. F o

MLO, F
o
CC are the two-view feature map that had aligned consistent

geometry features. Finally, by fcls(x) = (wT
cls · x) classifying direct prediction

logits P1 = fcls(Concat(F o
MLO, F

o
CC).

Summary of Advantage: SSM aligns consistent geometric features of tumor
across cross-view samples, reinforcing the direct effect.

2.3 KAAM for promoting positive side of mediation effect from M
in [X → M → Y ]

To obtain the predicted probabilities P2 (Term 2 in Eq. (2)), KAAM leverages
the K-A theorem [21] and the Maximum Coverage Problem (MCP) [8]. It de-
composes the total mediated effect into univariate effects centered on the target
tumor x. MCP selects M patches from two views to maximize x’s coverage, and
KAAM aggregates their predictions to approximate P2.

Specifically, FMLO and FCC are normalized by category and added to F ∗
MLO

and F ∗
CC. MCP selectsM candidate region coordinates {SMLO

j }Mj=1 and {SCC
j }Mj=1

with the highest weights in each view by iteratively searching on FMLO and FCC,
using predefined rectangular bounding boxes (512×512 in this experiment) and a
designed content scoring Function fscore(S, F ∗

MLO/CC) =
∑

(i,j)∈S F
∗
MLO/CC[i, j].

S
MLO/CC
t+1 = argmaxStfscore(S

t, F ∗
MLO/CC), t ∈ [0,M − 1], (4)

where t represents the number of times each candidate coordinate is generated.
During each selection, the weight reduction for the selected regions is controlled
by introducing the cover rate parameter r. Candidate regions in both views vary
according to: F ∗

t+1[i, j] = F ∗
t [i, j]·

(
1−r ·St[i, j]

)
, t ∈ [0,M−1]. The r allows some

weight overlap between different regions, enabling information sharing between
regions while maintaining contextual information. Based on these coordinates,
MCP selects the corresponding patches {Uj}Mj=1 ∈ IMLO, {Vj}Mj=1 ∈ ICC.
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Since patches are retrieved from coarse-grained feature maps, the target tu-
mor may appear in several patches with significant variation. KAAM decomposes
the weight ψ from Eq. (2) for each patch based on its prediction. Specifically,
feeding add(Uj , Vj) into the second backbone f2B(·) yields univariate represen-
tations {Fj}Mj=1, which are inherently discrete. KAAM then applies a B-spline
function h(·) [14] to map each Fj into a continuous smooth space hj(Fj) and
compute its logits {pj}Mj=1 (Eq. (5)).

pj = σ

(
M∑
l=1

hl(Fl)

)
· hj(Fj), (5)

where σ(·) represents the Sigmoid function. Based on pj , weight ψ can be defined
as: ψj =

exp(Pj/τ)∑M
l=1 exp(Pl/τ)

,∀j ∈ [M ]. The τ represents a temperature parameter that
controls the degree of emphasis on a particular patch. Then, the predicted logits
P2 of Eq. (2) for different univariate effect representation can be obtained by
aggregating the logits pj via P2 =

∑m
j=1 ψj · pj . Given the predictions P1 and

P2, the loss function L of MammoCRKAN is defined as L = ℓ(P1, Y )+ ℓ(P2, Y ).
ℓ(·, ·) is Focal loss [10].
Summary of Advantage: KAAM decomposes the mediation effect into a set
of univariate effects, thereby reducing negative side of mediation effect while
enhancing positive side.

3 Experimental Results

3.1 Experimental setup

Datasets. We use 4 public datasets, considering only ipsilateral MLO-CC image
pairs. (a) INBreast [16] contains 200 pairs from 115 patients (normal, benign,
and malignant), with 280 pairs for training and 116 for testing. (b) VinDr-
Mammo [17] includes 10,243 pairs from Vietnam, pre-split at a 4:1 patient-
level ratio (8,195 train, 2,046 test). (c) CBIS-DDSM [9] comprises 1,324 pairs
(1,054 train, 270 test). (d) CMMD [3] features 5,202 images from 1,775 patients
(benign or malignant), with 1,820 pairs for training, 260 for validation, and
520 for testing. Implementation Details. MammoCRKAN is implemented in
PyTorch and runs on an A100 GPU (40GB). We use a batch size of 8, an initial
learning rate of 1× 10−4 with AdamW, weight decay of 1× 10−4, and a cosine
annealing scheduler (min LR: 1 × 10−8). The model is trained for 80 epochs
with early stopping. Images are resized to 2944× 1920 and horizontally flipped
to maintain right-oriented breasts, following [2]. Performance is measured via
AUC, accuracy, precision, and F1 score.

3.2 Results and analysis

Comparison with State-of-the-Arts (Table 1). Our model is compared on
4 datasets with SOTA methods. Using only two unilateral views, our method
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Table 1: MammoCRKAN achieves the best classification results on four main-
stream datasets. △ shows how much MammoCRKAN exceeds SOTA. Growth
values are in red. Second-best results are in blue. U: Unilateral; B: Bilateral.

Method Venue Views INBreast VinDr-Mammo

ACC (%) ↑ Prec. (%) ↑ AUC (%) ↑ F1 (%) ↑ ACC (%) ↑ Prec. (%) ↑ AUC (%) ↑ F1 (%) ↑

DMV-CNN [23] TMI’19 B4 66.51±2.28 54.94±1.64 72.19±2.38 53.54±1.99 77.70±0.21 64.64±0.26 81.48±0.77 61.87±0.53

GMIC [19] MedIA’21 U1 63.36±0.61 59.17±3.51 76.60±0.37 44.03±2.14 64.98±0.52 47.28±0.18 64.98±0.52 26.22±0.21

GLAM [12] MIDL’21 U1 55.93±2.44 46.61±2.14 66.96±1.48 45.61±0.85 64.99±0.50 46.96±1.20 71.37±0.69 25.24±1.06

MVCCL [2] MICCAI’22 U2 56.03±0.91 54.97±1.72 78.18±1.56 57.30±0.88 80.36±0.49 71.68±0.13 82.39±0.62 73.84±1.25

PHYSEnet [15] Cancer’22 U2 64.08±2.63 59.08±2.40 71.22±2.29 59.16±1.97 80.07±1.14 71.33±2.97 84.65±2.17 72.86±1.71

LoraViT [27] ISBI’23 U1 65.81±0.50 60.63±0.17 75.88±0.10 57.45±0.36 71.27±0.25 65.81±0.29 77.26±0.02 61.72±0.60

MV-Swin-T [18] ISBI’24 U2 58.05±1.07 56.40±0.70 70.28±4.76 55.24±1.04 58.66±0.90 41.73±0.16 60.23±0.31 47.12±0.70

Bi-Mamba [25] MICCAI’24 U2 64.47±0.93 61.30±0.62 77.23±0.89 60.45±1.30 78.59±0.67 70.62±1.30 77.54±0.70 71.32±1.21

MammoCRKAN - U2 69.01±1.13 63.63±0.68 81.10±0.15 64.01±1.28 81.11±0.58 73.93±0.11 84.71±1.31 75.75±0.60

△ SOTA - - + 2.50 + 2.33 + 2.92 + 3.56 + 0.75 + 2.25 + 0.06 + 1.91

Method Venue Views DDSM-CBIS CMMD

ACC (%) ↑ Prec. (%) ↑ AUC (%) ↑ F1 (%) ↑ ACC (%) ↑ Prec. (%) ↑ AUC (%) ↑ F1 (%) ↑

DMV-CNN [23] TMI’19 B4 86.59±1.69 83.82±1.96 85.40±0.85 64.52±3.62 74.92±1.70 80.40±0.75 74.37±0.82 82.99±1.45

GMIC [19] MedIA’21 U1 88.28±2.01 87.86±2.50 87.27±0.44 72.50±2.07 78.50±0.92 82.68±0.79 70.13±1.55 86.55±0.81

GLAM [12] MIDL’21 U1 79.40±0.91 81.38±0.86 85.70±0.98 69.53±0.95 75.64±1.71 84.47±0.84 64.70±1.89 85.73±1.41

MVCCL [2] MICCAI’22 U2 79.32±1.47 86.82±1.07 86.04±0.59 73.80±0.53 74.91±2.48 83.52±0.55 72.79±1.40 84.69±2.31

PHYSEnet [15] Cancer’22 U2 82.92±0.46 91.75±0.47 92.84±0.42 82.46±0.41 74.75±0.91 81.26±0.95 70.24±2.38 84.32±0.95

LoraViT [27] ISBI’23 U1 75.71±0.71 85.27±1.29 90.47±0.74 76.00±0.59 76.01±2.59 82.75±1.49 69.39±0.81 81.63±1.17

MV-Swin-T [18] ISBI’24 U2 76.60±1.98 88.95±0.70 80.28±0.64 73.92±0.17 77.10±1.10 80.49±2.49 66.12±0.65 86.87±0.31

Bi-Mamba [25] MICCAI’24 U2 79.91±0.74 88.00±0.63 91.07±0.55 77.98±0.61 77.99±0.34 84.42±1.08 71.02±0.76 84.05±0.84

MammoCRKAN - U2 91.70±0.27 92.50±0.11 94.97±1.08 84.43±0.63 80.13±0.70 85.85±0.55 78.30±1.03 87.94±0.14

△ SOTA - - + 8.78 + 0.75 + 2.13 + 1.97 + 1.63 + 1.38 + 5.51 + 1.07

outperforms four-view method, and significantly improves all metrics over other
two-view methods, highlighting the importance of eliminating crosstalk interfer-
ence. It also excels in differentiating challenging intra-class benign and malignant
tumors compared to single-view models.

Table 2: Ablation studies on the CBIS-DDSM and CMMD testing demonstrate
the significant improvements of the proposed innovations.

CBIS-DDSM
Method Baseline SSM MCP KAN ACC (%) ↑ Prec. (%) ↑ AUC (%) ↑ F1 (%) ↑

I ✓ 85.69 83.11 84.37 76.79
II ✓ ✓ 87.36 (+1.67) 86.58 (+3.47) 87.55 (+3.18) 79.77 (+2.98)
III ✓ ✓ ✓ 89.94 (+2.58) 90.48 (+3.90) 89.12 (+1.57) 82.55 (+2.78)
IV ✓ ✓ ✓ ✓ 91.70 (+1.76) 92.50 (+2.02) 94.97 (+5.85) 84.43 (+1.88)

CMMD
Method Baseline SSM MCP KAN ACC (%) ↑ Prec. (%) ↑ AUC (%) ↑ F1 (%) ↑

I ✓ 74.35 78.70 70.92 80.68
II ✓ ✓ 77.41 (+3.06) 80.32 (+1.62) 73.53 (+2.61) 83.78 (+3.10)
III ✓ ✓ ✓ 79.65 (+2.24) 83.13 (+2.81) 75.80 (+2.27) 85.70 (+1.92)
IV ✓ ✓ ✓ ✓ 80.13 (+0.48) 85.85 (+2.72) 78.30 (+2.50) 87.94 (+2.24)

Component ablation studies (Table 2). (I): Use a dual-view ResNet-50
baseline where both views share a feature extractor and fuse features before
classification. (II): Feed extracted features into SSM to enhance the direct effect
along X → Y . (III): Add P1 directly to pj in each block without decomposing
ψ (Eq. 2). (IV): Apply KAAM (MCP + KAN) to boost the positive mediation
effect and reduce its negative side along X → M → Y .



8 G. Wang et al.

Parameter ablation studies (Fig. 3, Table 3). The mediator M delivers
optimal shared information (comprising B and X) at a cover rate of r = 0.3,
maximizing the positive mediation effect. When r = 0, negative effects increase,
and at r = 1.0, incomplete contextual information undermines the positive effect.
Both Fig. 3 and Table 3 confirm that impure shared information induces cross-
view interference and weakens X’s positive contribution in the mediation effect.
Visualization (Fig. 4). Heterogeneous cross-view channel configurations out-
perform forced alignment in the spherical geometric space. As shown in Fig. 4(a),
the optimal performance is achieved with channel combinations of {MLO: 256,
CC: 128}. Increasing feature channels only adds redundancy and interference.
Moreover, Fig. 4(b) demonstrates that MammoCRKAN yields more reliable rep-
resentations both within and between tumor classes.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

60

65

70

75

80

85

90 DDSM-CBIS
CMMD
Vindr-Mammo
INBreast

Fig. 3: Comparison of different cover
rate r of KAAM. Best results at 0.3.

Table 3: Effects of different region size
S and number M of KAAM.

S AUC (%) M AUC (%)
64×64 89.31 1 89.30

128×128 90.11 3 90.30
256×256 92.95 6 94.97
512×512 94.97 9 89.98
1024×1024 89.76 12 89.23

DDSM-CBIS Dataset CMMD Dataset

( a )

Benign
Malignant
Normal

Baseline MammoCRKAN

Benign
Malignant
Normal

( b )

Fig. 4: (a) Heterogeneous channel allocations for MLO and CC views outperform
fixed matching channels. (b)MammoCRKAN demonstrates superior representa-
tion both within and across classes.

4 Conclusion

In conclusion, our work tackles cross-view interference in multi-view mammo-
gram representation by introducing the first DMCG. Building on DMCG, we
propose MammoCRKAN—the first counterfactual reasoning paradigm integrat-
ing the Kolmogorov–Arnold theorem to decouple interfering information. By
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enhancing direct tumor feature effects via the SSM and mitigating negative side
of mediation effect via the KAAM, MammoCRKAN significantly improves rep-
resentation quality. Extensive experiments validate its effectiveness.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (No.62372280, No.62402297), the Demonstration Projects of Science
and Technology for the People of Qingdao City (No.23-2-8-smjk-2-nsh), the Natural
Science Foundation of Shandong Province (2024MF139, 2023QF094, ZR2022QG051),
the Special fund of Qilu Health and Health Leading Talents Training Project.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Cai, L., Fang, H., Xu, N., Ren, B.: Counterfactual causal-effect intervention for
interpretable medical visual question answering. IEEE Transactions on Medical
Imaging (2024)

2. Chen, Y., Wang, H., Wang, C., Tian, Y., Liu, F., Liu, Y., Elliott, M.S., McCarthy,
D.J., Frazer, H.M., Carneiro, G.: Multi-view local co-occurrence and global con-
sistency learning improve mammogram classification generalisation. In: Interna-
tional Conference on Medical Image Computing and Computer-Assisted Interven-
tion (2022)

3. Cui, C., Li, L., Cai, H., Fan, Z., Zhang, L., Dan, T., Li, J., Wang, J.: The chinese
mammography database (cmmd): An online mammography database with biopsy
confirmed types for machine diagnosis of breast. The Cancer Imaging Archive 1
(2021)

4. Hoch, S.J.: Counterfactual reasoning and accuracy in predicting personal events.
Journal of Experimental Psychology: Learning, Memory, and Cognition 11(4), 719
(1985)

5. Jain, K., Bansal, A., Rangarajan, K., Arora, C.: Mmbcd: Multimodal breast cancer
detection from mammograms with clinical history. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 144–154.
Springer (2024)

6. Jain, K., Rangarajan, K., Arora, C.: Follow the radiologist: Clinically relevant
multi-view cues for breast cancer detection from mammograms. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp.
102–112. Springer (2024)

7. Karaman, B.K., Dodelzon, K., Akar, G.B., Sabuncu, M.R.: Longitudinal mammo-
gram risk prediction. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. pp. 437–446. Springer (2024)

8. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. In-
formation processing letters 70(1), 39–45 (1999)

9. Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A
curated mammography data set for use in computer-aided detection and diagnosis
research. Scientific data 4(1), 1–9 (2017)

10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE international conference on computer vision.
pp. 2980–2988 (2017)



10 G. Wang et al.

11. Liu, H., Li, Q., Nie, W., Xu, Z., Liu, A.: Causal intervention for brain tumor
segmentation. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. pp. 160–170. Springer (2024)

12. Liu, K., Shen, Y., Wu, N., Chledowski, J., Fernandez-Granda, C., Geras, K.J.:
Weakly-supervised high-resolution segmentation of mammography images for
breast cancer diagnosis. Proceedings of machine learning research 143, 268–285
(2021)

13. Liu, R., Liu, H., Li, G., Hou, H., Yu, T., Yang, T.: Contextual debiasing for visual
recognition with causal mechanisms. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 12755–12765 (2022)

14. Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., Hou, T.Y.,
Tegmark, M.: Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756
(2024)

15. Lopez, E., Grassucci, E., Valleriani, M., Comminiello, D.: Multi-view hypercomplex
learning for breast cancer screening. arXiv preprint arXiv:2204.05798 (2022)

16. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.:
Inbreast: toward a full-field digital mammographic database. Academic radiology
19(2), 236–248 (2012)

17. Nguyen, H.T., Nguyen, H.Q., Pham, H.H., Lam, K., Le, L.T., Dao, M., Vu, V.:
Vindr-mammo: A large-scale benchmark dataset for computer-aided diagnosis in
full-field digital mammography. Scientific Data 10(1), 277 (2023)

18. Sarker, S., Sarker, P., Bebis, G., Tavakkoli, A.: Mv-swin-t: Mammogram classifi-
cation with multi-view swin transformer. 2024 IEEE International Symposium on
Biomedical Imaging (ISBI) pp. 1–5 (2024)

19. Shen, Y., Wu, N., Phang, J., Park, J., Liu, K., Tyagi, S., Heacock, L., Kim, S.G.,
Moy, L., Cho, K., et al.: An interpretable classifier for high-resolution breast cancer
screening images utilizing weakly supervised localization. Medical image analysis
68, 101908 (2021)

20. Tang, K., Niu, Y., Huang, J., Shi, J., Zhang, H.: Unbiased scene graph generation
from biased training. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 3716–3725 (2020)

21. Tikhomirov, V.: On the representation of continuous functions of several variables
as superpositions of continuous functions of one variable and addition. In: Selected
Works of AN Kolmogorov, pp. 383–387. Springer (1991)

22. Verma, S., Boonsanong, V., Hoang, M., Hines, K., Dickerson, J., Shah, C.: Coun-
terfactual explanations and algorithmic recourses for machine learning: A review.
ACM Computing Surveys 56(12), 1–42 (2024)

23. Wu, N., Phang, J., Park, J., Shen, Y., Huang, Z., Zorin, M., Jastrzębski, S., Févry,
T., Katsnelson, J., Kim, E., et al.: Deep neural networks improve radiologists’
performance in breast cancer screening. IEEE transactions on medical imaging
39(4), 1184–1194 (2019)

24. Xie, M.K., Xiao, J.H., Peng, P., Niu, G., Sugiyama, M., Huang, S.J.: Counterfactual
reasoning for multi-label image classification via patching-based training. arXiv
preprint arXiv:2404.06287 (2024)

25. Yang, Z., Zhang, J., Wang, G., Kalra, M.K., Yan, P.: Cardiovascular disease de-
tection from multi-view chest x-rays with bi-mamba. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 134–144.
Springer (2024)

26. Zhang, L., Zhai, X., Zhao, Z., Zong, Y., Wen, X., Zhao, B.: What if the tv was
off? examining counterfactual reasoning abilities of multi-modal language models.



Title Suppressed Due to Excessive Length 11

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 21853–21862 (2024)

27. Zhu, Y., Shen, Z., Zhao, Z., Wang, S., Wang, X., Zhao, X., Shen, D., Wang, Q.:
Melo: Low-rank adaptation is better than fine-tuning for medical image diagnosis.
2024 IEEE International Symposium on Biomedical Imaging (ISBI) pp. 1–5 (2023)


	 Rethinking Multi-view Mammogram Representation Learning via Counterfactual Reasoning with Kolmogorov-Arnold Theorem

