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Abstract. Vision Transformer (ViT) has recently gained tremendous
popularity in medical image segmentation task due to its superior ca-
pability in capturing long-range dependencies. However, transformer re-
quires a large amount of labeled data to be effective, which hinders its ap-
plicability in annotation scarce semi-supervised learning scenario where
only limited labeled data is available. State-of-the-art semi-supervised
learning methods propose combinatorial CNN-Transformer learning to
cross teach a transformer with a convolutional neural network (CNN),
which achieves promising results. However, it remains a challenging task
to effectively train the transformer with limited labeled data. In this
paper, we propose an adversarial masked image modeling (AdvMIM)
method to fully unleash the potential of transformer for semi-supervised
medical image segmentation. The key challenge in semi-supervised learn-
ing with transformer lies in the lack of sufficient supervision signal. To
this end, we propose to construct an auxiliary masked domain from orig-
inal domain with masked image modeling and train the transformer to
predict the entire segmentation mask with masked inputs to increase su-
pervision signal. We leverage the original labels from labeled data and
pseudo-labels from unlabeled data to learn the masked domain. To fur-
ther benefit the original domain from masked domain, we provide a theo-
retical analysis of our method from a multi-domain learning perspective
and devise a novel adversarial training loss to reduce the domain gap
between the original and masked domain, which boosts semi-supervised
learning performance. We also extend adversarial masked image model-
ing to CNN network. Extensive experiments on three public medical im-
age segmentation datasets demonstrate the effectiveness of our method,
where our method outperforms existing methods significantly. Our code
is publicly available at https://github.com/zlheui/AdvMIM.

Keywords: Adversarial Training · Masked Image Modeling · Semi-Supervised
Segmentation.

1 Introduction

Medical image segmentation is an important task for computer assisted diag-
nosis, treatment planning, and intervention. With the recent advancement of
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vision transformer [9] and its exceptional capability in capturing long-range de-
pendencies, there is growing interest in the medical domain to leverage trans-
former for medical image segmentation task [6, 5]. However, vision transformer
is even more annotation hungry than convolutional neural network (CNN) [22].
Semi-supervised learning methods aim to leverage a large amount of unlabeled
data together with a limited amount of labeled data for learning a segmenta-
tion network to reduce the annotation cost. Existing semi-supervised learning
methods can be categorized into pseudo-labeling based methods [1, 24, 7], consis-
tency regularization based methods [21, 27, 18, 16, 23, 2], deep co-training based
methods [19, 7, 29], and adversarial training based methods [28, 11]. However,
benchmarking results [15, 12] indicate that directly integrating these methods
with transformer leads to poor performance, likely due to the annotation de-
pendency of transformer. State-of-the-art semi-supervised learning method [15]
proposes cross-teaching to leverage the complementary architectural advantages
of both CNN with efficient local features learning and transformer with bet-
ter long-range dependencies capturing for the task. Most recently, Huang et
al. [12] propose a combinatorial CNN-Transformer learning framework at mani-
fold space with intra-student consistency regularization and inter-student knowl-
edge transfer, which achieves state-of-the-art performance on multiple datasets.
While these methods have achieved promising results, it remains a challenging
task to effectively train the transformer with limited labeled data.

In this paper, we propose an adversarial masked image modeling (AdvMIM)
method to fully unleash the potential of transformer for semi-supervised med-
ical image segmentation. The key challenge in semi-supervised learning with
transformer lies in the lack of sufficient supervision signal. While combinato-
rial CNN-Transformer learning based methods [15, 12] leverage a CNN network
to assign pseudo-labels to unlabeled data for training the transformer, which
boosts model performance, we believe even more supervision signal is needed to
effectively train the transformer. Therefore, we propose to construct an auxil-
iary masked domain from original domain with masked image modeling [26] and
perform masked domain learning with transformer to increase the supervision
signal. Specifically, masked image modeling [26] is an effective self-supervised
learning method for vision transformer, where the task is to reconstruct the
masked image patches. We employ the same masking operation to construct a
masked domain and train the vision transformer to predict the entire segmen-
tation mask from the masked inputs. We utilize the original labels from labeled
data and pseudo-labels from unlabeled data to learn the masked domain. With
the new input and new task, the transformer gains extra supervision signal for
learning. To further benefit the original domain from masked domain, we provide
a theoretical analysis of our framework from a multi-domain learning perspective
and devise a novel adversarial training loss to reduce the domain gap between
the original and masked domain, where we employ a domain discriminator to
distinguish the prediction masks of both original labeled data and masked un-
labeled data and adversarially train the transformer to produce more accurate



AdvMIM for Semi-Supervised Medical Image Segmentation 3

Fig. 1. Architecture and dataflow of our proposed adversarial masked image modeling
method. Our method constructs an auxiliary masked domain from original domain
with masked image modeling. We utilize original labels from labeled data and pseudo-
labels from unlabeled data to learn the masked domain. We further propose a novel
adversarial training loss to reduce the domain gap between the original and masked
domain to boost semi-supervised learning performance. Note pseudo-label ŷ is obtained
from a cross-teaching CNN.

prediction masks for the unlabeled masked data so that the discriminator cannot
distinguish them from those of labeled data.

In summary, we have made the following contributions in this paper: (1).
We propose an adversarial masked image modeling method to fully unleash the
potential of transformer for semi-supervised medical image segmentation; (2).
We provide a theoretical analysis of our method from a multi-domain learning
perspective and propose a novel adversarial training loss to reduce the domain
gap between masked and original domain; (3). We extend adversarial masked
image modeling to CNN network; (4). We perform extensive experiments to
evaluate our method on three public medical image segmentation datasets, where
our method outperforms existing methods significantly.

2 Methodology

In semi-supervised medical image segmentation, we are given N l labeled data
Dl = {(xl

i, y
l
i)}N

l

i=1 and Nu unlabeled data Du = {xu
i }N

u

i=1, where yli is the corre-
sponding segmentation mask for xl

i with M classes and N l << Nu. Both the
labeled data and unlabeled data are sampled from probability distribution P ,
where unlabeled data are sampled without labels. The goal is to learn an accu-
rate segmentation model with both labeled and unlabeled data. Fig. 1 presents
an overview of our proposed adversarial masked image modeling method.

2.1 Segmentation

As illustrated in Fig. 1, we train the transformer segmentation network S :
RH×W×3 → RH×W×M with both labeled data and pseudo-labeled unlabeled
data. We follow existing methods [15, 12] to cross teach the transformer network
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concurrently with a convolutional neural network C : RH×W×3 → RH×W×M ,
where the pseudo-label for unlabeled data is obtained through ŷui = argmax(C(xu

i )).
As pseudo-label may contain noise, we weight the loss function with its maximum
predicted probability as a certainty measure [14], where low-quality pseudo-labels
will have small weights especially in early training iterations. The weight is cal-
culated as wu

i = max(C(xu
i )). The segmentation loss functions on labeled and

unlabeled data for the transformer are defined as follows:

Ll
seg(S) = Exl∼Dl [H(yl, S(xl)) +Dice(yl, S(xl))], (1)

Lu
seg(S) = Exu∼Du [wuH(ŷu, S(xu)) +Dice(ŷu, S(xu))], (2)

where H(·) calculates the pixel-wise cross-entropy loss and Dice(·) calculates the
Dice loss. Note the CNN is trained together with the transformer using the same
loss functions except that pseudo-labels for CNN are assigned by transformer.

2.2 Masked Domain Learning

The key challenge in semi-supervised medical image segmentation with vision
transformer lies in the lack of sufficient supervision signal. We propose to con-
struct an auxiliary masked domain from the original domain with masked im-
age modeling [26]. But instead of reconstructing the masked image patches, we
propose to train the transformer to predict the entire segmentation mask with
masked input, where the transformer learns to infer the semantics on masked
image patches based on the visible ones. We employ the same masking operation
in masked image modeling to construct masked images. We replace the masked
image patches with shared learnable mask tokens with positional embedding and
utilize original labels from labeled data and pseudo-labels from unlabeled data
to learn the masked domain. With the new input and new task, the transformer
gains extra supervision signals for learning. The masked domain learning loss for
labeled and unlabeled data are defined as follows:

Ll
mdl(S) = Exl∼Dl [H(yl, S(xml))) +Dice(yl, S(xml)], (3)

Lu
mdl(S) = Exu∼Du [wuH(ŷu, S(xmu) +Dice(ŷu, S(xmu)], (4)

where xml = [M(xl, ρ);T ] is the masked labeled data, M(·, ρ) denotes the mask-
ing operation with mask ratio ρ, T denotes the set of mask tokens to replace the
masked image patches with positional embedding, the operation [·; ·] concate-
nates two input vectors into a single vector, and xmu = [M(xu, ρ);T ]. Follow-
ing [26], we set ρ = 0.7 by default.

2.3 Adversarial Masked Domain Adaptation

We treat both the pseudo-labeled original domain and the pseudo-labeled masked
domain as noisily labeled domain. Inspired by [3], we analyze our framework
from a multi-domain learning perspective and present the following theorem:
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Theorem 1 (Masked Domain Adaptation Theorem). Following the prob-
lem definition, let h be a hypothesis in class H, let γ be the pseudo-label noise
ratio, denote the probability distribution of pseudo-labeled original domain as P ′

and the probability distribution of pseudo-labeled masked domain as Q′, then for
any δ ∈ (0, 1), with probability at least 1− δ, for every h ∈ H, we have:

ϵP (h) ≤
1

2
ϵP ′(h) +

1

2
ϵQ′(h) +

1

4
dH∆H(P,Q′) +

1

2
λ+ γ, (5)

where ϵP (·) (resp. ϵP ′(·), ϵQ′(·)) measures the expectation error of a hypothe-
sis on original (resp. pseudo-labeled original, pseudo-labeled masked) data dis-
tribution, dH∆H(·, ·) measures the distribution discrepancy between two data
distributions, and λ = minh∈H ϵP (h) + ϵQ(h).

Proof (Sketch). We leverage Lemma 4 in [3] to bound the expectation error on
original domain with multi-domain learning loss on both original and pseudo-
labeled masked domain. We apply triangle inequality to bound both the ex-
pectation error of original domain and the optimal error between original and
pseudo-labeled masked domain with pseudo-label noise ratio. After term combi-
nation and rearrangement, we derive the final bound.

The theorem upper bounds expectation error on original domain with (1). expec-
tation error on pseudo-labeled original domain; (2). expectation error on pseudo-
labeled masked domain; (3). the domain gap between original and masked do-
main; (4). pseudo-label noisy ratio; and (5). the non-optimizable optimal er-
ror between original and pseudo-labeled masked domain that is assumed to be
small [3]. Our segmentation loss and masked domain learning loss functions
minimize term (1) and term (2) respectively. We weight the loss functions with
certainty measures to minimize term (4). Except for the non-optimizable term
(5), our theorem further indicates that it is necessary to minimize term (3), the
domain gap between original and masked domain to fully bound the expectation
error on original domain.

To this end, we introduce a domain discriminator Ds : RH×W×M → R,
which takes the prediction masks from both original labeled data and masked
unlabeled data as input and outputs the domain prediction. We adversarially
train the transformer to confuse the domain discriminator, where the trans-
former and the domain discriminator play a two-player min-max game following
the GAN [10] framework. At the optimal, the transformer aligns the masked un-
labeled data distribution towards the original labeled data distribution to reduce
the domain gap between masked and original domain so that the discriminator
cannot distinguish the prediction masks between them anymore. Following [17],
we adopt the least squares loss for GAN training to enhance the training tability.
The adversarial masked image modeling loss is defined as follow:

Ldmim
(Ds) = Exl∼Dl [(Ds(S(x

l))− 1)2]

+ Exu∼Du [(Ds(S(x
mu)))2],

(6)

Ladvmim
(S) = Exu∼Du [(Ds(S(x

mu))− 1)2]. (7)
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Discussion. Note different from existing adversarial training based semi-supervised
learning method [28], which performs adversarial training to reduce the domain
gap between labeled and unlabeled data, our method constructs and learns an
auxiliary masked domain and performs adversarial training to reduce the domain
gap between original and masked domain on labeled and masked unlabeled data.

2.4 Extension to CNN

We propose to extend adversarial masked image modeling to CNN network to im-
prove its learning with limited labeled data, which in turn can benefit the learn-
ing of transformer through the cross-teaching process. Specifically, we apply the
same masking operation and perform masked domain learning and adversarial
masked domain adaptation on CNN network. We add a domain discriminator Dc

to reduce the domain gap between original and masked domain in CNN branch.
Due to the symmetry of transformer and CNN branch, the same loss functions
are defined for CNN network. Without loss of generality, the overall objective of
our framework is defined as follows:

min
S,C

Ll
seg + Lu

seg + Ll
mdl + Lu

mdl + λadvLadvmim ,

min
Ds,Dc

Ldmim ,
(8)

where λadv is balancing weight which is empirically set to be 0.001.

3 Experimental Analysis

Datasets. We evaluate the effectiveness of our framework on three public datasets,
namely Automated Cardiac Diagnosis Challenge (ACDC) [4], Synapse [13], and
International Skin Imaging Collaboration (ISIC) [8]. ACDC contains 100 mag-
netic resonance imaging (MRI) scans of three organs. Following [15], we adopt
70, 10 and 20 cases for training, validation and testing. We evaluate with 3%
and 10% partitions of training data as labeled data, while the rest training
data as unlabeled data for semi-supervised segmentation. Synapse consists of 30
computed tomography (CT) scans annotated with eight abdominal organs. Fol-
lowing [12], we adopt 18 and 12 cases for training and testing and evaluate with
15% and 30% partitions of the training data. ISIC is a skin lesion segmentation
dataset including 2,594 dermoscopy images, with 1,838 training images and 756
validation images. We experiment with 3% and 10% partitions of training data.
Implementation. In all experiments, we adopt Swin-UNet [5] as the trans-
former segmentation network and UNet [20] as the convolutional neural network.
The UNet is only used for complementary training and not used for final predic-
tion. We implement the domain discriminator with a five-layer CNN network. We
train our framework with SGD optimizer for 30,000 iterations, where the initial
learning rate is 0.05, momentum is 0.9 and weight decay is 1e-4. The batch size is
16 with half labeled and half unlabeled images. Following [12], we randomly crop
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Table 1. Ablation study on ACDC (10%) and Synapse (15%) in Dice (%) and HD
(mm). The best performance is marked in bold.

Method Ll
seg Lu

seg Ll
mdl Lu

mdl Ladvmim ACDC (10%) Synapse (15%)
S C S C S C S C S C Dice HD Dice HD

Labeled only ✓ 79.6 4.1 45.7 43.1
+Cross Teaching(weighted) ✓ ✓ ✓ ✓ 86.6 2.5 63.1 26.7

+Masked Domain Learning ✓ ✓ ✓ ✓ ✓ ✓ 88.2 1.8 65.0 23.5
+Adversarial Masked Domain Adaptation ✓ ✓ ✓ ✓ ✓ ✓ ✓ 88.9 1.3 65.8 22.9

AdvMIM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 89.0 1.3 66.3 22.7

Table 2. Comparison with SoTA methods on ACDC, Synapse, and ISIC in Dice (%)
and HD (mm). The best results are in bold, and the second-best results are underlined.

Method ACDC (3%) ACDC (10%) Synapse (15%) Synapse (30%) ISIC (3%) ISIC (10%)
Dice HD Dice HD Dice HD Dice HD Dice HD Dice HD

MT [21] 56.6 34.5 81.0 14.4 49.7 69.4 61.1 63.8 72.8 37.4 73.4 34.0
UA-MT [27] 61.0 25.8 81.5 14.4 51.3 93.4 57.8 63.9 73.0 38.6 73.4 33.2
EM [24] 60.2 24.1 79.1 14.5 49.5 72.7 59.7 63.8 72.3 36.3 72.7 39.3
DCT [19] 58.2 26.4 80.4 13.8 51.0 77.0 60.6 64.2 72.9 40.6 76.0 35.7
CCT [18] 58.6 27.9 81.6 13.1 40.2 75.9 57.6 69.9 67.7 42.2 72.3 31.7
CPS [7] 60.3 25.5 83.3 11.0 47.9 66.2 60.7 69.0 68.6 44.4 74.3 35.7
ICT [23] 58.1 22.8 81.1 11.4 52.7 70.5 62.7 59.6 73.2 37.2 75.3 34.6
DAN [28] 52.8 32.6 79.5 14.6 47.0 93.3 58.3 73.3 69.5 39.5 72.4 30.4
URPC [16] 56.7 31.4 82.9 10.6 48.9 69.6 59.7 66.0 70.3 39.3 75.8 32.8
CTCT [15] 70.4 12.4 86.4 8.6 60.4 45.4 68.7 44.3 71.3 43.2 76.0 37.3
SSNet [25] 70.5 17.4 85.3 10.6 58.1 47.3 66.8 34.9 72.8 40.8 75.8 32.8
ICT-Med [2] 56.3 22.6 83.7 13.1 51.5 62.0 61.2 59.1 71.4 39.2 74.9 33.1
M-CnT [12] 75.3 10.7 88.4 4.4 65.3 32.6 71.4 31.2 77.9 32.1 81.1 24.4
AdvMIM 85.4(10.1↑) 2.0(8.7↓) 89.0(0.6↑) 1.3(3.1↓) 66.3(1.0↑) 22.7(9.9↓) 74.8(3.4↑) 15.5(15.7↓) 79.8(1.9↑) 22.2(9.9↓) 81.8(0.7↑) 19.5(4.9↓)

a patch with size of 224×224 as the input. We perform standard data augmen-
tation to avoid overfitting, including random flip and rotation. We employ two
commonly-used metrics, the Dice coefficient (Dice) and the Hausdorff Distance
(HD) to quantitatively evaluate the segmentation performance.
Ablation Study. In Table 1, we present the ablation study of different com-
ponents of our method. As can be observed, the baseline labeled only method
performs poorly. Our weighted cross-teaching loss, which integrates certainty
measures to cross teach the transformer with a CNN network significantly im-
proves the baseline method. Masked domain learning trains the transformer with
extra supervision signal, which significantly boosts the performance. The exper-
iment result empirically confirms our previous analysis that even more super-
vision signal is needed to effectively train the transformer. The addition
of adversarial masked domain adaptation to reduce the domain gap between the
original and masked domain further improves the model performance. The ex-
periment result reveals that the domain gap between the original and
masked domain can negatively affect semi-supervised learning perfor-
mance and reducing the domain gap helps to boost semi-supervised
learning performance. Finally, the extension of adversarial masked image
modeling to CNN network provides extra improvement.
Comparison with SoTA Methods. In Table 2, we present the comparison
results of our method with state-of-the-art methods on different label partitions
across three public datasets. As can be observed, for all label partitions and
datasets, our method outperforms existing methods significantly. For ACDC,
our method outperforms the previous best method M-CnT by 10.1% in Dice
and 8.7mm in HD on 3% partition, which is a tremendous improvement and
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Fig. 2. Visual comparison with different methods on ACDC (3%).

Table 3. Effect of Mask Ratio on
ACDC (3%) in Dice (%) and HD (mm).

mask ratio 0.1 0.3 0.5 0.7 0.9
Dice 84.7 85.0 85.1 85.4 80.5
HD 2.4 2.3 2.1 2.0 3.8

Table 4. Sensitivity analysis of λadv on
ACDC (3%) in Dice (%) and HD (mm).

λadv 0.0001 0.001 0.01 0.1 1.0
Dice 85.0 85.4 85.3 85.3 76.6
HD 2.3 2.0 2.1 2.1 4.8

highlights the effectiveness of our method in handling limited labeled data sce-
nario. For Synapse, our method significantly outperforms previous best method
by 1.0% and 3.4% in Dice, 9.9mm and 15.7mm in HD on 15% and 30% parti-
tions respectively. For ISIC, our method outperforms previous best method by
1.9% in Dice and 9.9mm in HD on 3% partition, where a tremendous improve-
ment is observed in HD score. We further observe that our method maintains
strong performance even with a small label partition, where other methods fail.
Specifically, our method achieves 85.4% and 79.8% in Dice for ACDC and
ISIC with only 3% labeled data, which highlights its remarkable applicability in
real-world scenarios with extremely limited annotations.
Visualization Results. In Fig. 2, we present the visual comparison results
of our method with different comparison methods. As shown in the figure, our
method produces qualitatively much better segmentation masks when compared
to existing adversarial training based method DAN [28], state-of-the-art method
CTCT [15], and our ablated masked domain learning method.
Effectiveness of Mask Ratio. In Table 3, we present the effect of mask ratio
on our method. Mask ratio controls the domain gap between masked and original
domain. Too small mask ratio results in mask domain too similar to the original
domain, which limits the extra supervision signal. Too large mask ratio increases
the domain gap, which degrades the performance as supported by our Theorem 1.
The default mask ratio of 0.7 gives the best performance.
Sensitivity Analysis. In Table 4, we present the sensitivity analysis of our
method on the hyperparameter λadv. Experiment results show that our method
is robust to the change of λadv in a wide range but too large value leads to poorer
performance. The default value of λadv = 0.001 gives the best performance.
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4 Conclusion

In this paper, we propose an adversarial masked image modeling method to fully
unleash the potential of transformer for semi-supervised medical image segmen-
tation. Our key contributions include the construction of a masked domain with
masked image modeling for effective training of transformer with extra super-
vision signal and a theoretical analysis showing that the domain gap between
masked and original domain can negatively affect semi-supervised learning per-
formance. Thus, we propose a novel adversarial masked domain adaptation loss
to minimize the domain gap. We also extend adversarial masked image modeling
to CNN network. Extensive experiments on three public medical image segmen-
tation datasets demonstrate the effectiveness of our method, where our method
outperforms existing methods significantly.
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