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Abstract. The precise prediction of Pathological Complete Response
(pCR) following Neoadjuvant Chemo-ImmunoTherapy (NCIT) in Head
and Neck Squamous Cell Carcinoma (HNSCC) is crucial for optimizing
therapeutic strategies and prognostic evaluation. Current methods ex-
hibit limitations in simultaneously modeling multi-temporal treatment
dynamics, multi-sequence magnetic resonance imaging (MRI) correla-
tions, and multi-modal feature interactions. To address this challenge,
we present a novel multi-modal representation and fusion framework,
HARM?3-Fusion, which innovatively processes multi-temporal, multi-
sequence MRI data and hierarchically fuses it with whole slide image
(WSI) to enhance the accuracy of pCR prediction. Specifically, our method
comprises three key modules: a multi-temporal MRI fusion module based
on Loss-enhanced Dual-stream Convolutional Variational Auto-Encoder
(LD-VAE), designed to decouple features from pre-treatment and post-
treatment MRI scans; a multi-sequence MRI fusion module based on
self-attention for integrating MRI features from T1 and T2 weighted
sequences; and a multi-modal MRI-WSI fusion module based on cross-
attention to fuse complementary information between MRI and WSI.To
evaluate the efficacy of HARM?3-Fusion, we establish HNSCC-pCR, the
first multi-modal dataset for HNSCC. HNSCC-pCR, dataset comprises
407 patients, with each case including pre-treatment and post-treatment
T1-weighted and T2-weighted MRI scans, WSI of pre- biopsy specimens,
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and pathologically confirmed surgical pCR. Based on this dataset, ex-
perimental results demonstrate that HARM?>-Fusion achieves superior
performance for pCR prediction compared to other single-modal and
multi-modal approaches.

Keywords: Multi-modal Learning - Pathological Complete Response
Prediction - Head and Neck Squamous Cell Carcinoma

1 Introduction

HNSCC, the sixth most prevalent malignant tumor globally [I], presents signif-
icant clinical challenges in therapeutic decision making. While landmark clini-
cal trials (e.g., KEYNOTE-048 [2]) have demonstrated that NCIT can signif-
icantly improve patient survival, clinical data reveal that only ~60.3% of pa-
tients achieve pCR due to substantial inter-individual heterogeneity in NCIT
sensitivity [3]. Current pCR assessment relies on WSI of invasive biopsy speci-
mens, which is not only intrinsically traumatic but also prone to sampling bias.
Critically, pCR status directly guides subsequent surgical planning and organ-
preservation strategies [4]. Thus, developing a non-invasive, reliable, and clini-
cally deployable pCR prediction method is imperative for optimizing personal-
ized HNSCC treatment paradigms.

Currently, many studies are dedicated to accurately predicting pCR. Stud-
ies indicate that patients achieving pCR. exhibit distinct tumor lesions on pre-
imaging, with near-complete elimination of invasive lesions on post-treatment
scans. In contrast, non-pCR patients exhibit persistent residual tumors, leading
to a high structural similarity between pre-/post- treatment MRI scans. There-
fore, dynamic information from pre-/post- treatment images was captured using
multi-task learning to predict treatment response [5]. However, there are still
theoretical limitations in distinguishing treatment response-related changes from
the inherent heterogeneity of the tumor [6]. Another approach predicted pCR by
learning stromal histology features from pretreatment WSI using a deep learn-
ing model [7]. However, the WSI-dependent microscopic characterization lacks
the support of macroscopic dynamic information, making it difficult to indepen-
dently support the multi-dimensional prediction task of pCR. To address these
issues, a multi-modal Transformer architecture was designed for breast cancer [§],
and an orthogonal fusion strategy was proposed [9], utilizing contrastive learning
to optimize MRI features before and after treatment. However, most methods fail
to systematically investigated the synergy between intra-modal optimization and
inter-modal complementarity, particularly lacking a hierarchical fusion strategy
for MRI temporal dynamic features and WSI spatial heterogeneity features. To
address current challenges in predicting NCIT response for HNSCC, we propose
HARM?3-Fusion, which is the first hierarchical attention-based multimodal fusion
framework for NCIT response prediction in HNSCC. Our approach innovatively
integrates multi-temporal, multi-sequence MRI and WSI data through a novel
temporal feature decoupling and multi-modal fusion strategy, aiming at overcom-
ing key limitations of existing methods in modeling tumor dynamic evolution,
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capturing heterogeneity, and optimizing cross-modal interactions. Specifically,
for multi-temporal modeling, we designed a LD-VAE to decouple treatment-
induced tumor dynamic evolution features from tumor heterogeneity features
through joint optimization of cross-reconstruction and contrastive losses. Be-
sides, we designed a self-attention fusion module to correlate multi-sequence MRI
features (T1 and T2), and a multi-modal cross-attention fusion module to model
pathological-radiological interactions between WSI and MRI. These components
collectively establish a hierarchical attention fusion mechanism. To support this
research, we have established the largest multimodal dataset for pCR prediction
in HNSCC, named HNSCC-pCR, comprising 407 fully-annotated patient cases.
Each case includes multi-sequence MRI (T1/T2) acquired pre-/post- treatment,
WSI prior to NCIT, and definitive pCR status labels. This comprehensive dataset
enables robust investigation of treatment response dynamics for HNSCC.
The main contributions are as follows:

— We designed a LD-VAE to effectively disentangle latent variations in MRI
before and after treatment.

— We propose a hierarchical multi-modal fusion mechanism that leverages both
self-attention and cross-attention strategies to achieve complementary multi-
sequence information integration and cross-modal feature interaction.

— We establish the largest multi-modal dataset for HNSCC pCR prediction to
date, comprising 407 complete patient cases with paired T1/T2, pre-/post-
treatment MRI and pre-treatment WSI, which will serve as a benchmark
resource for advancing research for HNSCC.

2 Methods

As illustrated in Fig. |1} our framework comprises three core components: (1)
a multi-temporal MRI fusion module, (2) a multi-sequence MRI fusion module,
and (3) a multi-modal MRI-WSI fusion module. The multi-temporal MRI fusion
module processes paired pre-/post- treatment MRI scans to generate temporally-
disentangled feature representations. These features are then sent into the multi-
sequence MRI fusion module, which employs self-attention mechanisms to inte-
grate complementary information from T1 and T2 sequences, producing a unified
MRI feature embedding. Finally, the multi-modal MRI-WSI fusion module es-
tablishes diagnostic-relevant interactions between the MRI embedding and WSI
features through cross-attention, ultimately generating the pCR prediction.

2.1 Multi-Temporal MRI Fusion

Comparing two temporal images before and after treatment, tumor lesions in
patients with pCR nearly disappear after treatment. Therefore, we expect sig-
nificant differences in the features of the image pairs from pCR patients before
and after treatment, while the opposite is true for non-pCR patients. Therefore,
we designed a LD-VAE for decoupling the features of multi-temporal MRIs.
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Fig. 1. Overview architecture of our proposed HARM?®-Fusion model: (a) HARM?-
Fusion contains two key components: temporal decoupling learning and hierarchical
attention fusion module. (b) Ilustration of the temporal feature decoupling. By de-
signing a LD-VAE architecture, the inherent component Inher(Z;) and the variational
component Varia(Z;) are extracted, making the decoupling effect more apparent. (c)
Schematic diagram of the hierarchical attention fusion module.

LD-VAE contains two VAE [I0] branches that process pre-/post- treatment
images respectively. In each VAE branch, the input features {X,ve, Xpost } which
are extracted from the original MRIs {Ipye, Ipost} are processed through the
encoder {Epre, Epost } to obtain the mean and variance of the input data, followed
by the addition of noise sampled from a standard normal distribution to obtain
the latent variable {Zpre; Zpost }

Zpre = Epre(Xpre)7 Zpost = Epost(Xpost)~ (1)

Subsequently, the latent variable is decomposed using fully connected layers
to extract the inherent Z; i ner and variant components Z; varia,

Zi = [Zi—inhen Zi—varia]>i S {pre>P05t}~ (2>

The decoder Dpyre, Dpost then fuses the inherent variables of the pre-/post-
treatment branches with their respective variant components to obtain the fea-
ture sequence for each branch. Finally, the sequences are concatenated to form
the temporal fusion sequence Fiemporals

Ftemporal = Z Di(Zi—inhcrv Zi—varia)a 1€ {prea pOSt}' (3)
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To enhance the decoupling effect, the overall loss function is the weighted
sum of the reconstruction loss L;ccon and the contrastive loss Leontra-

The reconstruction loss Liecon includes the mean square error loss and the
KL divergence. The mean square error is adopted to minimize the difference
between the reconstructed features and the input data, where the reconstructed
features include the own intrinsic component and the cross intrinsic component
reconstruction. KL divergence is employed to minimize the latent variables and
the prior distribution. L;econ is shown as follows,

Erecon = Z Z HXZ - Di(Zj—Inhera Zi—varia) |§ + KL(q(Zz|X7)||p(Zz))7 (4)
i g

where i, j € {pre, post}.

The contrastive loss Lcontra encourages the model to uncover subtle features
associated with pCR, which employs cosine similarity (COS) loss and mean
squared error (MSE) loss to retain inherent features while distinguishing variant
features. Leontra is designed as follows,

Econtra =A COS(Zprc—Variay Zpost—Varia) + (]- - )\) MSE(Zprc—Inhcra Zpost-Inhcr)7 (5)

where A is a hyper-parameter that controls the balance between these feature
components.

2.2 Multi-Sequence MRI Fusion

For MRI multi-sequence fusion, we take contrast-enhanced T1-weighted images
(T1) and T2-weighted images (T2) as inputs. T1 sequences highlight lesion en-
hancement features by injecting contrast agents into the blood, while T2 se-
quences reveal specific lesion features with high signal intensity. Therefore, in
clinical practice, comparing images from these two sequences is essential for
further assessing the condition of the patient. Leveraging this feature comple-
mentarity, we designed a self-attention [II] fusion module to capture the in-
ternal relationships between two sequences. First, we concatenate the T1 and
T2 sequences, then incorporate relative positional encoding to enhance the self-
attention module’s ability to differentiate two sequences. Finally, the fused im-
age, which contains complementary information, is generated as the output.

2.3 Multi-Modal MRI-WSI Fusion

Due to the significant differences between MRI and WSI modalities, we choose
cross-attention to flexibly capture the dynamic relationships between modalities
for deep fusion of heterogeneous modalities.

To overcome the challenge posed by the extremely high resolution of WSI
images, which complicates processing, we first carry out feature extraction and
then proceed with fusion. We extract the WSI feature sequence in three steps:
segmentation, patching, and feature extraction [I12]. First, the WSI image is con-
verted from the RGB color space to the HSV color space, where a saturation
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threshold is applied to distinguish the foreground from the background and de-
lineate the tissue boundaries. Next, the image is divided into 224 x224 patches,
where a patch is considered valid if one of its four corner points lies within the
tissue region, while patches outside the tissue region are excluded from feature
extraction. Subsequently, we use a vision transformer-based feature extractor [13]
to extract a feature sequence from each patch, and these sequences are concate-
nated to form the feature map for the WSI of each patient. Prior to multi-modal
fusion, multi-head attention [I4] is applied to pool the sequence length into a
fixed value, ensuring alignment of the WSI features.

We used cross-attention [15] to fuse the MRI feature Fyry with the WSI
feature Fywsi. Wo, Wi, Wy are learnable parameters. Qwsr is the dot product of
Fywsr and Wg, and Kyviri, Varrr are the dot products between Fyrr and Wiy, Wy, .
dy is the dimension of Fwsr and Fyry, which is 512 in our experiment. Cross-
attention weight matrix A can be calculated as,

QWSIKE/[RI )
vy

The fused feature Fiuseq is the dot product of the weight matrix A and Vg,

A = Softmax ( (6)

Ffused =A- VMRI- (7)

After fusion, Fiuseq is processed by a convolutional neural network (CNN)
followed by a multilayer perceptron (MLP) to perform pCR prediction task.

3 Experiments

3.1 Datasets and Evaluation Metrics

We established a dataset of HNSCC patients from a collaborating hospital, cov-
ering the period from 2020 to 2023. The dataset included T1/T2, pre-/post-
treatment MRIs, WSI before NCIT, and the pCR label. The pCR label indi-
cates the complete disappearance of malignant cells in the primary tumor and
metastatic lymph nodes, as determined by pathology after NCIT. The dataset
comprised 407 patients, of whom 122 achieved pCR and 285 did not. We split
the dataset into training and validation sets with an 80/20 ratio and performed
five-fold cross-validation to evaluate performance using five metrics: sensitivity,
specificity, Area Under Curve (AUC), accuracy, and F1-score.

3.2 Implementation Details

The HARM?-Fusion model was trained on an NVIDIA RTX 4090D 24GB GPU.
To reduce overfitting, we employed L1 and L2 regularization, with the Adam
optimizer. The initial learning rate was set to 10~%, and the weight decay was
1076, The maximum number of epochs was set to 200, with a batch size of 8.
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pCR=0

Fig. 2. Class Activation Maps (upper) and Voxel-wise annotations (lower) of HNSCC.

Table 1. Performance comparison between our proposed HARM?3-Fusion and state-
of-the-art methods on HNSCC-pCR dataset. Bold denotes the best performance.

Model | MRI WSI | AUCt ACCt Flscore? SENt SPE1?
3D-CNN [I6] v — [ 05881 0.6854  0.5357  0.5212  0.614

ResNet [17] v ~ | 05218 0.6914  0.5879  0.5500  0.6705
3D-RPNET [f] | v -~ | 07059 0.7365  0.6578  0.6337  0.7183
CLAM [12] - v | 06202 07020  0.6121  0.6278  0.6601
TransMIL [I8] | - v | 06132 06914 05745  0.6020 0.6191
HMCAT [19] v v | 06968 07479  0.6741  0.6414  0.7350
M2Fusion [9] v v | 06905 0.7256  0.6812  0.6455  0.7419
Ours v v | 0.7581 0.8272 0.7541  0.6578 0.8167

3.3 Comparison to other methods

To evaluate the performance of our model, we compare HARMS3-Fusion with
current mainstream or state-of-the-art unimodal and multi-modal models. The
experimental results are shown in Tab. [1, where HARM3-Fusion performs well on
five core metrics, all of which are significantly better than the unimodal model.
Compared with M2-fusion, an orthogonal multi-modal fusion model using a sin-
gle MRI sequence, HARM?3-Fusion improves 6.76% on AUC, indicating that the
hierarchical fusion mechanism effectively improves the ability of multi-sequence,
multi-modal complementary information interaction. Meanwhile, compared with
HMCAT, the Fl-score is improved by 7.48%, indicating that HARM?2-Fusion’s
excellent decoupling ability for multi-sequence MRI can balance the impact of
the long-tailed distribution of the data and accurately identify the positive sam-
ples, which has excellent clinical applicability.

We generated the decoupled feature heatmaps by extracting the weights and
gradients of the last convolutional layer of the feature extraction network [20],
as shown in Fig. [2| which provided the attention maps of HARM?3-Fusion across
different regions of the MRI. The heatmaps include the feature extraction results
for both T1 and T2 sequences, before and after treatment, along with the ground
truth tumor location images manually annotated. By comparing the heatmaps
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Table 2. Model performance with different attention configurations.

LD-VAE Attention-1 Attention-2| AUC ACC Fl-score SEN SPE

- v v 0.6258 0.6829 0.6586 0.5945 0.7367
v - v 0.6917 0.7784 0.6888 0.6210 0.7602
v v - 0.7195 0.7931 0.7206 0.6563 0.7862
v - - 0.6810 0.7502 0.6812 0.6027 0.7586
v v v 0.7581 0.8272 0.7649 0.6978 0.8167

with the ground truth, it is evident that the feature extraction network is able
to focus on the tumor regions as well as other areas. This demonstrates that our
MRI multi-temporal feature extraction model is capable of isolating the unique
features associated with PCR and decoupling potential changes that cannot be
captured by the ROI labels.

As a result, this study indicates that: (1) Our designed LD-VAE can effec-
tively decouple the dynamic latent information of MRI before and after treat-
ment. (2) Our multi-sequence fusion approach effectively utilizes the actual clini-
cal information and improves the degree of interaction of T1-T2 information. (3)
Our designed multi-modal fusion mechanism further enhances the classification
prediction ability of HARM3-Fusion.

3.4 Ablation Study

Multi-temporal MRI fusion module, multi-sequence MRI fusion module, and
multi-modal MRI-WSI fusion modules are the three key components of HARM?3-
Fusion. To evaluate the contribution of each component in our model to the pCR
prediction performance, in Table [2] we progressively removed different mod-
ules in HARM?3-Fusion and compared the performance differences before and
after the removal. The results are as follows: (1) When removing the multi-
temporal MRI fusion module, we directly connected the features of MRI for
subsequent prediction. The model’s Fl-score dropped by 10.6%, and sensitivity
dropped by 10.33%, indicating that LD-VAE can effectively improve the de-
coupling ability of MRI temporal information and enhance the differentiation
of positive samples. (2) When removing the multi-sequence MRI fusion module
and multi-modal MRI-WSI fusion module and replacing it with feature link-
age, the AUC decreased by 6.64% and 3.86%, respectively, indicating that the
hierarchical attentional fusion module is critical for effectively enhancing the
ability of multi-sequence and multi-modal information interaction. (3) Further,
when only LD-VAE was retained for individual prediction, the AUC decreased
by 7.71%, illustrating the critical role of fusing complementary anatomical and
histopathological features for pCR prediction.
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4 Conclusion

In this work, we propose HARM3-Fusion, a framework that integrates clinical di-
agnostic data via three dedicated modules: a multi-temporal MRI fusion module,
a multi-sequence MRI fusion module, and a multi-modal MRI-WSI fusion mod-
ule to predict NCIT response for patients with HNSCC. We design a LD-VAE to
fully decouple MRI temporal features, and subsequently integrate complemen-
tary multi-sequence MRI data via a self-attention mechanism, and finally employ
a cross-attention mechanism to fuse WSI data. Ultimately, after validation on
a comprehensive dataset of 407 patients, HARM?3-Fusion demonstrates superior
robustness in pCR prediction.
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